K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

dat \(\sqrt{1-x}=a\left(a>=0\right)\)

=>1+x=2-a^2

khi đó  pt đã cho trở thành

\(a+2-a^2+4a\left(2-a^2\right)=6\)

6 tháng 3 2018

Đặt \(\sqrt{1-x}\)= a ( a \(\ge\)0 )

Khi đó 1 + x = 2 - a2

Vậy biến đổi phương trình thành: 

\(a+2-a^2-4a\left(2-a^2\right)=6\)

23 tháng 6 2021

a) Áp dụng bđt AM-GM có:

\(\sqrt[3]{\left(9-x\right).8.8}\le\dfrac{9-x+8+8}{3}=\dfrac{25-x}{3}\)\(\Leftrightarrow\sqrt[3]{9-x}\le\dfrac{25-x}{12}\)

\(\sqrt[3]{\left(7+x\right).8.8}\le\dfrac{7+x+8+8}{3}=\dfrac{23+x}{3}\)\(\Leftrightarrow\sqrt[3]{7+x}\le\dfrac{23+x}{12}\)

Cộng vế với vế \(\Rightarrow\sqrt[3]{9-x}+\sqrt[3]{7+x}\le4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}9-x=8\\7+x=8\end{matrix}\right.\)\(\Rightarrow x=1\)

Vậy...

b)Đk:\(x\ge2\)

Pt \(\Leftrightarrow\left(x-1\right)^2.\left(x^2-4\right)=\left(x-2\right)^2.\left(x^2-1\right)\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\left(x-1\right)\)

Do \(x\ge2\Rightarrow x-1>0\)

Chia cả hai vế của pt cho x-1 ta được:

\(\left(x-1\right)\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x-1\right)\left(x+2\right)-\left(x-2\right)\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2+x-2-x^2+3x-2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)

Vậy S={2}

c)Đk:\(\left\{{}\begin{matrix}9-x^2\ge0\\x^2-1\ge0\\x-3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Rightarrow x=3\)

Thay x=3 vào pt thấy thỏa mãn

Vậy S={3}

23 tháng 6 2021

a) Quên mất, ko áp dụng đc AM-GM, xin lỗi

Pt \(\Leftrightarrow\sqrt[3]{9-x}-2=2-\sqrt[3]{7+x}\)

\(\Leftrightarrow\dfrac{9-x-8}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{8-\left(7-x\right)}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\)

\(\Leftrightarrow\dfrac{1-x}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{1-x}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{1}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4=4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}\left(1\right)\end{matrix}\right.\)

Từ (1) \(\Leftrightarrow\sqrt[3]{\left(9-x\right)^2}-\sqrt[3]{\left(7+x\right)^2}+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)

\(\Leftrightarrow\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)\left(\sqrt[3]{9-x}+\sqrt[3]{7+x}\right)+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)

\(\Leftrightarrow\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right).4+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)

\(\Leftrightarrow\sqrt[3]{9-x}-\sqrt[3]{7+x}=0\)

\(\Leftrightarrow\sqrt[3]{9-x}=\sqrt[3]{7+x}\)\(\Leftrightarrow9-x=7+x\)

\(\Leftrightarrow x=1\)

Vậy S={1}

12 tháng 10 2023

a) \(\sqrt{-x^2+x+4}=x-3\left(đk:x\ge3\right)\)

\(-x^2+x+4=x^2-6x+9\)

\(2x^2-7x-5=0\)

\(\Delta=49-4.2.\left(-5\right)=89\)

\(\left[{}\begin{matrix}x=\dfrac{7+\sqrt{89}}{4}\left(TM\right)\\x=\dfrac{7-\sqrt{89}}{4}\left(L\right)\end{matrix}\right.\)

b) \(\sqrt{-2x^2+6}=x-1\left(đk:x\ge1\right)\)

\(-2x^2+6=x^2-2x+1\)

\(3x^2-2x-5=0\)

\(\Delta=4+4.3.5=64\)

\(\left[{}\begin{matrix}x=\dfrac{2-8}{6}=-1\left(L\right)\\x=\dfrac{2+8}{6}=\dfrac{5}{3}\left(TM\right)\end{matrix}\right.\)

c) \(\sqrt{x+2}=1+\sqrt{x-3}\left(Đk:x\ge3\right)\)

\(x+2=1+x-3+2\sqrt{x-3}\)

\(\sqrt{x-3}=2\)

\(x-3=4\)

\(x=7\)

3 tháng 2 2021

\(\sqrt{x-4\sqrt{x-1}+3}+\sqrt{x-6\sqrt{x-1}+8}=1\\ < =>\sqrt{x-1-2\sqrt{x-1}.2+4}+\sqrt{x-1-2\sqrt{x-1}.3+9}=1\\ < =>\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)ĐK: x>=1

\(< =>|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=1\\ < =>\left(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\right)^2=1\\ < =>\sqrt{x-1}-2+2\left|\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-3\right)\right|+\sqrt{x-1}-3=1\\ < =>2\sqrt{x-1}-5+2\left|x+5-5\sqrt{x-1}\right|=1\\ < =>2\left|x+5-5\sqrt{x-1}\right|=6-2\sqrt{x-1}\\ < =>\left|x+5-5\sqrt{x-1}\right|=3-\sqrt{x-1}\)

\(< =>\left[{}\begin{matrix}x+5-5\sqrt{x-1}=3-\sqrt{x-1}\left(1\right)\\x+5-5\sqrt{x-1}=\sqrt{x-1}-3\left(2\right)\end{matrix}\right.\)

Giải (1): \(x+5-5\sqrt{x-1}=3-\sqrt{x-1}\\ < =>x+2-4\sqrt{x-1}=0\\ < =>x-1-2\sqrt{x-1}.2+4=1\\ < =>\left(\sqrt{x-1}-2\right)^2=1\\ < =>\left[{}\begin{matrix}\sqrt{x-1}-2=1\\\sqrt{x-1}-2=-1\end{matrix}\right.< =>\left[{}\begin{matrix}x=8\\x=0\left(loại\right)\end{matrix}\right.\)

Giải (2) cũng ra x=8

NV
6 tháng 8 2021

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

NV
6 tháng 8 2021

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

NV
20 tháng 7 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2-x+1=x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\1-x=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

b.

ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-3\end{matrix}\right.\)

Do \(\left\{{}\begin{matrix}\sqrt{x^2-3x+2}\ge0\\\sqrt{x^2+x-6}\ge0\end{matrix}\right.\) với mọi x thuộc TXĐ

\(\Rightarrow\sqrt{x^2-3x+2}+\sqrt{x^2+x-6}\ge0\)

Đẳng thức xảy ra khi:

\(\left\{{}\begin{matrix}x^2-3x+2=0\\x^2+x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=2\) (thỏa mãn ĐKXĐ)

Vậy pt có nghiệm duy nhất \(x=2\)

NV
20 tháng 7 2021

c.

Với \(x< 1\Rightarrow\left\{{}\begin{matrix}x-1< 0\\\sqrt{x^4-2x^2+1}\ge0\end{matrix}\right.\) phương trình vô nghiệm

Với \(x\ge1\) pt tương đương:

\(\sqrt{\left(x^2-1\right)^2}=x-1\)

\(\Leftrightarrow\left|x^2-1\right|=x-1\)

\(\Leftrightarrow x^2-1=x-1\) (do \(x\ge1\Rightarrow x^2-1\ge0\Rightarrow\left|x^2-1\right|=x-1\))

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0< 1\left(loại\right)\\x=1\end{matrix}\right.\)

NV
13 tháng 8 2021

ĐKXĐ: \(x\ge-1\)

\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(\Leftrightarrow\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

Ta có:

\(\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|\ge\left|\sqrt{x+1}+1+\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

Dấu "=" xảy ra khi và chỉ khi:

\(\sqrt{x+1}-3\ge0\Rightarrow x\ge8\)

Vậy nghiệm của pt là \(x\ge8\)