Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\cos3x-\cos11x\)
\(=\cos9x+\cos3x\)
\(=\cos11x\)
\(=\cos\left(\pi-9x\right)\)
\(\sin^2x+\dfrac{3}{2}\cos2x + 5 = 0\)
\(\Leftrightarrow \sin^2x+\dfrac{3}{2}(1-2\sin^2x) + 5 = 0\)
\(\Leftrightarrow \sin^2x=\dfrac{13}{4}\)
Suy ra PT vô nghiệm.
Cách khác chi tiết hơn
Ta đã biết \(\cos 2x = \cos^2 x -\sin^2 x = (1-\sin^2 x)-\sin^2 x = 1-2\sin^2 x\)
Vì vậy \(y = \sin^2 x +(1.5)(1-2\sin^2 x) + 5\)
\(\Rightarrow y = -2\sin^2 x + 6.5\). Bây giờ, khi \(\sin x\in [-1,1]\),\(\sin^2 x \in [0,1]\),vậy \(y \in[ 6,5;7,5]\)
Ta dễ dàng thấy \(y=0\) ko trong khoảng, vậy \(y=0\) ko phải là nghiệm cho \(x\)
ĐK: \(cosx\ne0\Leftrightarrow x\ne\frac{\pi}{2}+k\pi,k\inℤ\).
\(1+tanx=2\left(sinx+cosx\right)\)
\(\Leftrightarrow cosx+sinx=2cosx\left(sinx+cosx\right)\)
\(\Leftrightarrow\orbr{\begin{cases}sinx+cosx=0\\cosx=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=cos\left(-x-\frac{\pi}{2}\right)\\cosx=cos\frac{\pi}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm\left(-x-\frac{\pi}{2}\right)+k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{cases}},\left(k\inℤ\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-\pi}{4}+k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{cases}},\left(k\inℤ\right)\)(thỏa mãn)
\(1+\tan x=2\left(\sin x+\cos x\right)\)
Bạn áp dụng đẳng thức lượng giác nhé :
\(\frac{\sin x+\cos x}{\cos x}=2\sin x+2\cos x\)
Biệt thức :
\(D=b^2-4ac\)
\(\Leftrightarrow\left(-1\right)^2-4\left(1.1\right)=-3\)
Phương trình không có nghiệm thực :
\(D< 0\)
Nghiệm tuần hoàn :
\(2\pi k-\frac{\pi}{4}\)
\(2\pi k+\frac{3\pi}{4}\)
\(2\pi k+\frac{\pi}{3}\)
\(2\pi k-\frac{\pi}{3}\)
Ps : không hiểu chỗ nào thì bạn hỏi mình nhé, nhớ k :33
# Aeri #
Tham khảo tại
Tìm số nghiệm của phương trình trên khoảng (-π; π): 2(sinx + 1)(sin^22x - 3sinx + 1) = sin4x.cosx - Toán học Lớp 11 - Bài tập Toán học Lớp 11 - Giải bài tập Toán học Lớp 11 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
_ Minh ngụy _
2(sinx+1)( (sin2x)^2-3sinx+1 )= sin4x.cosx
<>2(sinx+1)( (sin2x)^2-3sinx+1 )= 4cos2xsinx.(1-sinx)(1+sinx)
+ sinx +1 =0 <>...
+ (sin2x)^2 - 3sinx + 1 = 2cos2xsinx.(1-sinx)
<>(sin2x)^2 - 3sinx + 1 = (sin3x - sinx)(1-sinx)
<>(sin2x)^2 - 2sinx +cos^2x = sin3x - sin3xsinx
<>1 - cos4x - 4sinx + 1 + cos2x = 2sin3x - (cos2x - cos4x)
<>cos4x - cos2x + sin3x - 1 = 0
<>-2sin3xsinx + sin3x - 1 =0
đặt sinx = t => pt bậc 4
8t^4 + 12t^3 + 2t^2 + t + 1 =0
<> t =-1/2
Đến đây thay t = sinx rồi ép khoảng nghiệm
\(DK:0< x< 10\)
\(\Leftrightarrow\left(2\sin x.\cos x-\cos x\right)+\left(6\sin x-3\right)=0\)
\(\Leftrightarrow\cos x\left(2\sin x-1\right)+3\left(2\sin x-1\right)=0\)
\(\Leftrightarrow\left(2\sin x-1\right)\left(\cos x+3\right)=0\)
\(\Leftrightarrow\sin x=\frac{1}{2}\)
\(\Leftrightarrow x=30\left(l\right)\)
Vay PT voi \(x\in\left(0;10\right)\)vo nghiem
phương trình tương đương:
sin4x.sin7x-cos3x.cos6x=0
<=> \(\frac{-1}{2}\)cos11x+\(\frac{1}{2}\)cos3x-\(\frac{1}{2}\)cos9x-\(\frac{1}{2}\)cos3x=0
<=> -\(\frac{1}{2}\)( cos11x+cos9x)=0
<=> cos 11x+cos9x=0
<=> 2cos10x.cosx=0
<=>\(\left[\begin{array}{nghiempt}cos10x=0\\cosx=0\end{array}\right.\)
<=>\(\left[\begin{array}{nghiempt}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{20}+\frac{k\pi}{10}\end{array}\right.\) với k \(\in\)Z
vậy có 2 nghiệm trên đó