Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)^2+2\left(x^2+1\right)^2\frac{3x}{2}+\frac{9x^2}{4}-\frac{x^2}{4}=0\)
\(\Leftrightarrow\left(x^2+1+\frac{3x}{2}\right)^2-\left(\frac{x}{2}\right)^2=0\)
\(\Leftrightarrow\left(x^2+1+\frac{3x}{2}-\frac{x}{2}\right)\left(x^2+1+\frac{3x}{2}+\frac{x}{2}\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+2x+1\right)=0\)
\(\forall x,\)\(x^2+x+1=x^2+2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(\Rightarrow x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x=-1\)
Vậy tập nghiệm của pt là S={-1}
\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)
\(\Rightarrow x=\pm1\)
Giúp tớ mấy câu còn lại đi các cậu, tớ cần gấp lắm ạ ;;-;;
(x+2)3-(x-2)3=12x(x-1)-8
<=> x3+6x2+12x+8-x3+6x2-12x+8=12x2-12x-8
<=>12x2+16=12x2-12x-8
<=>12x=-24
<=>x=-2
\(\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-1\right)-8\)
\(\left(x^3+6x^2+12x+8\right)-\left(x^3-6x^2+12x-8\right)=12x^2-12x-8\)
\(x^3+6x^2+12x+8-x^3+6x^2-12x+8=12x^2-12x-8\)
\(12x^2+16-12x^2+12x+8=0\)
\(24+12x=0\Leftrightarrow12x=-24\Leftrightarrow x=-2\)
a)\(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)
\(\Leftrightarrow\frac{2-x}{2007}-1+2=\frac{1-x}{2008}+1-\frac{x}{2009}+1\)
\(\Leftrightarrow\frac{2-x}{2007}+\frac{2007}{2007}=\frac{1-x}{2008}+\frac{2008}{2008}-\frac{x}{2009}+\frac{2009}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}=\frac{2009-x}{2008}-\frac{2009-x}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}-\frac{2009-x}{2008}+\frac{2009-x}{2009}=0\)
\(\Leftrightarrow\left(2009-x\right)\left(\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2009}\right)=0\)
\(\Leftrightarrow2009-x=0\).Do \(\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2009}\ne0\)
\(\Leftrightarrow x=2009\)
b)\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
\(\Leftrightarrow\left(12^2x^2+2\cdot12\cdot7x+7^2\right)\left(6x^2+7x+2\right)-3=0\)
\(\Leftrightarrow\left[24\left(6x^2+7x+2\right)+1\right]\left(6x^2+7x+2\right)-3=0\)
Đặt \(t=6x^2+7x+2\) ta có:
\(\left(24t+1\right)t-3=0\)\(\Leftrightarrow12t^2+t-3=0\)
Suy ra t rồi tìm đc x
a)\(3\left(x^4+x^2+1\right)=\left(x^2+x+1\right)^2\)
Cauchy-schwarz:
\(\left(1+1+1\right)\left(x^4+x^2+1\right)\ge\left(x^2+x+1\right)^2\)
"="<=>\(x=1\)
b)\(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(x^2+x-1=t\)
\(\Rightarrow\left(t-1\right)\left(t+1\right)=24\)
\(\Leftrightarrow t^2-25=0\)
\(\Leftrightarrow t=\pm5\)
t=5\(\Leftrightarrow x^2+x-1=5\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
t=-5<=> pt vô nghiệm
\(\Leftrightarrow x^4-18^2-12x+80=0\)\(\Leftrightarrow x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80=0\)\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-14x-40\right)=0\)\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2+6x^2-24x+10x-40\right)=0\)\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2+6x+10\right)=0\)\(\hept{\begin{cases}x=2\\x=4\\x^2+6x+9+1=0\Leftrightarrow\left(x+3\right)^2=-1\left(L\right)\end{cases}}\)
vậy x=2 và x=4