Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne0\)
Ta có: \(\frac{10}{x}+2\left(\frac{1}{80}-\frac{1}{x}\right)=\frac{2}{15}\)
\(\Leftrightarrow\frac{8}{x}+\frac{1}{40}-\frac{2}{15}=0\)
\(\Leftrightarrow\frac{960}{120x}+\frac{3x}{120x}-\frac{16x}{120x}=0\)
\(\Leftrightarrow960+3x-16x=0\)
\(\Leftrightarrow960-13x=0\)
\(\Leftrightarrow13x=960\)
hay \(x=\frac{960}{13}\)(tm)
Vậy: \(x=\frac{960}{13}\)
ĐKXĐ: \(x\ne\left\{-10;-8;-3;-1\right\}\)
\(\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{5}{\left(x+3\right)\left(x+8\right)}+\frac{2}{\left(x+8\right)\left(x+10\right)}=\frac{9}{52}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+10}=\frac{9}{52}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+10}=\frac{9}{52}\)
\(\Leftrightarrow\frac{9}{\left(x+1\right)\left(x+10\right)}=\frac{9}{52}\)
\(\Leftrightarrow\left(x+1\right)\left(x+10\right)=52\)
\(\Leftrightarrow x^2+11x-42=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-14\end{matrix}\right.\)
\(\frac{x+5}{95}+\frac{x+3}{97}+\frac{x+1}{99}=\frac{x+15}{85}+\frac{x+20}{80}+\frac{x+25}{75}.\)
\(\frac{x+5}{95}+1+\frac{x+3}{97}+1+\frac{x+1}{99}+1-\frac{x+15}{85}-1-\frac{x+20}{80}-1-\frac{x+25}{75}-1=0\)
\(\frac{x+100}{95}+\frac{x+100}{97}+\frac{x+100}{99}-\frac{x+100}{85}-\frac{x+100}{80}-\frac{x+100}{75}=0\)
\(\left(x+100\right).\left(\frac{1}{95}+\frac{1}{97}+\frac{1}{99}-\frac{1}{85}-\frac{1}{80}-\frac{1}{75}\right)=0\)
\(\Rightarrow x+100=0\Rightarrow x=-100\)
\(\frac{1}{95}+\frac{1}{97}+\frac{1}{99}-\frac{1}{85}-\frac{1}{80}-\frac{1}{75}\ne0\)
\(\frac{80}{x+4}+\frac{80}{x-4}=\frac{25}{3}\left(ĐkXĐ:x\ne\pm4\right)\\ \Leftrightarrow\frac{3.80\left(x-4\right)+3.80\left(x+4\right)-25.\left(x^2-16\right)}{\left(x^2-16\right).3}=0\\ \Leftrightarrow\frac{240x-960+240x+960-25x^2+400}{3.\left(x^2-16\right)}=0\\ \Leftrightarrow\frac{-25x^2+480x+400}{3.\left(x^2-16\right)}=0\\ \Leftrightarrow\frac{-25.\left(x+\frac{4}{5}\right)\left(x-20\right)}{3.\left(x^2-16\right)}=0\\ \Leftrightarrow\left[{}\begin{matrix}x+\frac{4}{5}=0\\x-20=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\frac{4}{5}\left(Nhận\right)\\x=20\left(Nhận\right)\end{matrix}\right.\\ \Rightarrow S=\left\{-\frac{4}{5};20\right\}\)
Bài làm:
PT:
đkxđ: \(x\ne0;x\ne2\)
Ta có: \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+2x=2+x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(vl\right)\\x+1=0\end{cases}}\Rightarrow x=-1\)
BPT:
Ta có: \(\frac{x+1}{2}-x\le\frac{1}{2}\)
\(\Leftrightarrow\frac{x+1}{2}-x-\frac{1}{2}\le0\)
\(\Leftrightarrow\frac{x+1-2x-1}{2}\le0\)
\(\Leftrightarrow\frac{-x}{2}\le0\)
\(\Rightarrow-x\le0\)
\(\Rightarrow x\ge0\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\frac{2+x-2-x^2-2x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow-x^2-x=0\)
\(\Leftrightarrow-x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}}\)
Vậy \(S=\left\{-1\right\}\)
b) \(\frac{x+1}{2}-x\le\frac{1}{2}\)
\(\Leftrightarrow x+1-2x-1\le0\)
\(\Leftrightarrow-x\le0\)
\(\Leftrightarrow x\ge0\)
Vậy \(x\ge0\)
ĐK: x \(\ne\)-1; x \(\ne\)2
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
<=> \(\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
<=> x2 - 4 + 3x + 3 = 3 + x2 - x - 2
<=> x2 + 3x - x2 + x = 1 + 1
<=> 4x = 2
<=> x = 1/2
Vậy S = {1/2}
\(a,\Leftrightarrow5\left(x-2\right)-15x\le9+10\left(x+1\right)\)
\(\Leftrightarrow5x-10-15x\le9+10x+10\)
\(\Leftrightarrow-20x\le29\)
\(\Leftrightarrow x\ge-1,45\)
Vậy ...........
\(b,\Rightarrow\left(x+2\right)-3\left(x-3\right)=5\left(x-2\right)\)
\(\Leftrightarrow x+2-3x+9-5x+10=0\)
\(\Leftrightarrow-7x+21=0\)
\(\Leftrightarrow x=3\)
Vậy ..............
\(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\Leftrightarrow\frac{5\left(x-2\right)}{30}-\frac{15x}{30}\le\frac{9}{30}+\frac{10\left(x+1\right)}{30}\)
\(\Leftrightarrow5x-10-15x-9-10x-10\le0\)
\(\Leftrightarrow-20x-29\le0\Leftrightarrow\left(-20x\right)\cdot\frac{-1}{20}\ge29\cdot-\frac{1}{20}\)
\(\Leftrightarrow x\ge-\frac{29}{20}\)
phương trình tương đương với 1+\(\frac{1}{x}+1+\frac{1}{x+3}\)=1+\(\frac{1}{x+1}+1+\frac{1}{x+2}\)\(\Leftrightarrow\frac{1}{x}+\frac{1}{x+3}=\frac{1}{x+2}+\frac{1}{x+1}\)
\(\Leftrightarrow\frac{2x+3}{x\left(x+3\right)}=\frac{2x+3}{\left(x+1\right)\left(x+2\right)}\)\(\Leftrightarrow\left(2x+3\right)\left(\frac{1}{x\left(x+3\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)\)=0
\(\Leftrightarrow\left(2x+3\right)\left(\frac{\left(x+1\right)\left(x+2\right)-x\left(x+3\right)}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{2}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\right)=0\)\(\Leftrightarrow2x+3=0\Leftrightarrow x=\frac{-3}{2}\)
ĐKXĐ : \(x\ne0;x\ne2\)
Khi đó \(\frac{80}{x-2}-\frac{80}{x}=2\)
=> \(\frac{80x-80\left(x-2\right)}{x\left(x-2\right)}=\frac{2x\left(x-2\right)}{x\left(x-2\right)}\)
<=> \(\frac{160}{x\left(x-2\right)}=\frac{2x^2-4x}{x\left(x-2\right)}\)
=> 2x2 - 4x = 160
<=> x2 - 2x = 80
<=> x2 - 2x - 80 = 0
<=> x2 - 2x + 1 - 81 = 0
<=> (x - 1)2 - 92 = 0
<=> (x - 1 + 9)(x - 1 - 9) = 0
<=> (x + 8)(x - 10) = 0
<=> \(\orbr{\begin{cases}x+8=0\\x-10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-8\\x=10\end{cases}}\)
Vậy \(x\in\left\{-8;10\right\}\)là nghiệm phương trình
\(\frac{80}{x-2}-\frac{80}{x}=2\)ĐK : \(x\ne0;2\)
\(\Leftrightarrow\frac{80x-80\left(x-2\right)}{x\left(x-2\right)}=\frac{2x\left(x-2\right)}{x\left(x-2\right)}\)
\(\Rightarrow160=2x^2-4x\Leftrightarrow x^2-2x-80=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+8\right)=0\Leftrightarrow x=10;x=-8\)( tm )
Vậy tập nghiệm của phương trình là S = { -8 ; 10 }