Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-1}{3x^2+7x+2}+\frac{3}{9x^2+15x+4}-\frac{2x+7}{3x^2-5x-12}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{2x-1}{\left(3x+1\right)\left(x+2\right)}+\frac{3}{\left(3x+1\right)\left(3x+4\right)}-\frac{2x+7}{\left(4x+3\right)\left(x-3\right)}=\frac{5}{\left(x+2\right)}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{3x+1}+\frac{1}{3x+1}-\frac{1}{3x+4}+\frac{1}{3x+4}-\frac{1}{x-3}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x-3}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{x-3-x-2}{\left(x+2\right)\left(x-3\right)}=\frac{5\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\)
\(\Leftrightarrow5x-3=-5\)
\(\Leftrightarrow x=-\frac{2}{5}\)
Chúc bạn học tốt !!!
\(\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1}{\left(x-3\right)\left(2x-1\right)}=\frac{2x+5}{\left(x-3\right)\left(2x-1\right)}\)
\(\frac{\left(x-3\right)\left(x+4\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=\frac{\left(2x+5\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}\)
\(\Rightarrow x^2+x-12+x^2-x-2=2x^2+x-10\Leftrightarrow x=-4\)
\(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{2x-5}{2x^2-7x+3}-\frac{x+1}{2x^2-7x+3}\)
\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{x+4}{2x^2-7x+3}\)
TH1:\(x+4\ne0\)
\(\Rightarrow2x^2-5x+2=2x^2-7x+3\)
\(\Rightarrow-5x+2=-7x+3\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
TH2:\(x+4=0\)
\(\Rightarrow x=-4\)
Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
a,\(\frac{2x+5}{3}-2=\frac{3x-7}{5}\)
\(\Rightarrow5\left(2x+5\right)-30=3\left(3x-7\right)\)
\(\Leftrightarrow10x+25-30=9x-27\)
\(\Leftrightarrow x=-22\)
vậy....................
\(b,\frac{x}{6}+x=\frac{2x+1}{2}\)
\(\Rightarrow2x+12x=6\left(2x+1\right)\)
\(\Leftrightarrow14x=12x+6\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
vậy.....................
c,\(\frac{x}{4}-\frac{2x-1}{3}=-\frac{5x}{12}\)
\(\Rightarrow3x-4\left(2x-1\right)=-5x\)
\(\Leftrightarrow3x-8x+4=-5x\)
\(\Leftrightarrow0x=-4\left(PTVN\right)\)
VẬY................
P/s : bạn chú ý \(\Rightarrow\)với \(\Leftrightarrow\)nha
8,
b, (-x2+12x+4)/(x2+3x-4) = 12/(x+4) + 12/(3x-3)
(=) (-x2+12x+4)/(x-1)(x+4) -12(x-1)/(x-1)(x+4) - 4(x+4)/(x-1)(x+4) = 0
(=) -x2 +12x +4 -12x +12 -4x -16 = 0
(=) -x2 -4x = 0
(=) -x(x+4) = 0
(=) -x = 0 hoặc x +4 = 0
(=) x=0 hoặc x=-4
Vậy S={0;4}
Chúc bạn học tốt.
a, \(1-\frac{2x-1}{9}=3-\frac{3x-3}{12}\)
\(\Leftrightarrow\frac{108-12\cdot\left(2x-1\right)}{108}=\frac{108\cdot3-9\cdot\left(3x-3\right)}{108}\)
\(\Rightarrow108-12\cdot\left(x-1\right)=108\cdot3-9\cdot\left(3x-3\right)\)
\(\Leftrightarrow108-24x+12=324-27x+27\)
\(\Leftrightarrow3x=231\)
\(\Rightarrow x=77\)
c,\(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
\(\Rightarrow3\cdot\left(50-2x^2\right)\cdot\left(6x+30\right)+15\cdot\left(4x-20\right)\cdot\left(6x+30\right)+7\cdot\left(4x-20\right)\cdot\left(50-2x^2\right)=0\)
\(\Leftrightarrow900x+4500-36x^3-180x^2+360x^2+1800x-1800x-9000+1400x-56x^3-7000+280x^2=0\)
\(\Leftrightarrow-92x^3+460x^2+2300x-11500=0\)
\(\Leftrightarrow92x^3-460x^2-2300x+11500=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12
\(\frac{2x+1}{2x^2+5x+2}-\frac{3}{x^2-4}=2\)
\(\frac{2x+1}{2x^2+4x+x+2}-\frac{3}{\left(x-2\right)\left(x+2\right)}=2\)
\(\frac{2x+1}{x\left(2x+1\right)+2\left(2x+1\right)}-\frac{3}{\left(x-2\right)\left(x+2\right)}=2\)
\(\frac{2x+1}{\left(2x+1\right)\left(x+2\right)}-\frac{3}{\left(x-2\right)\left(x+2\right)}=2\)
\(\frac{\left(2x+1\right)\left(x-2\right)-3\left(2x+1\right)}{\left(2x+1\right)\left(x+2\right)\left(x-2\right)}=2\)
\(\frac{\left(2x+1\right)\left(x-2-3\right)}{\left(2x+1\right)\left(x+2\right)\left(x-2\right)}=2\)
\(x-5=2\left(x+2\right)\left(x-2\right)\)
\(x-5=2x^2-8\)
\(2x^2-x-3=0\)
\(2x^2-3x+2x-3=0\)
\(2x\left(x+1\right)-3\left(x+1\right)=0\)
\(\left(x+1\right)\left(2x-3\right)=0\)
\(\orbr{\begin{cases}x+1=0\\2x-3=0\end{cases}< =>\orbr{\begin{cases}x=-1\\x=\frac{3}{2}\end{cases}}}\)
KL ............
\(\frac{2x+1}{2x^2+5x+2}-\frac{3}{x^2-4}=0\)
\(\Leftrightarrow\frac{2x+1}{2x^2+x+4x+2}-\frac{3}{x^2-4}=2\)
\(\Leftrightarrow\frac{2x+1}{x\left(2x+1\right)+2\left(2x+1\right)}-\frac{3}{x^2-4}=2\)
\(\Leftrightarrow\frac{2x+1}{\left(x+2\right)\left(2x+1\right)}-\frac{3}{\left(x+2\right)\left(x-2\right)}=2\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{3}{\left(x+2\right)\left(x-2\right)}=2\)
\(\Leftrightarrow\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{3}{\left(x+2\right)\left(x-2\right)}=2\)
\(\Leftrightarrow\frac{x-2-3}{\left(x+2\right)\left(x-2\right)}=2\)
\(\Leftrightarrow\frac{x-5}{\left(x+2\right)\left(x-2\right)}-2=0\)
\(\Leftrightarrow\frac{x-5}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x-5}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x^2-4\right)}{\left(x+2\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x-5-2x^2+8}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{-2x^2+x+3}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow-2x^2+x+3=0\)
\(\Leftrightarrow-2x^2+3x-2x+3=0\)
\(\Leftrightarrow-2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(-2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\-2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{2}\end{cases}}}\)