![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^4-4x^3+3x^2+4x-4=0\)
\(\Leftrightarrow\) \(x^4-4x^3+4x^2-x^2+4x-4=0\)
\(\Leftrightarrow\) \(x^2\left(x^2-4x+4\right)-\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\) \(x^2\left(x-2\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\) \(\left(x-2\right)^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\) \(^{\left(x-2\right)^2=0}_{x^2-1=0}\) \(\Leftrightarrow\) \(^{x-2=0}_{x^2=1}\) \(\Leftrightarrow\) \(^{x=2}_{x=^+_-1}\)
Vậy, \(S=\left\{-1;1;2\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn đã học giải pt bậc 2 chưa có công thức bài nào cũng giải đc
a) x^2+3x=0
<=> x(x+3)=0
<=> x=0 hoặc x+3=0
<=> x=0 hoặc x=-3
S={0;-3}
b) x^2-x-42=0
<=> x^2-7x+6x-42=0
<=> x(x-7)+6(x-7)=0
<=> (x-7)(x+6)=0
<=> x-7=0 hoac x+6=0
<=> x=7,x=-6
c) ,d) tương tự
e) 2x^3+3x^2-x-1=0
<=> 2x^3+x^2+2x^2+x-2x-1=0
<=> x^2(2x+1)+x(2x+1)-(2x+1)=0
<=> (2x+1)(x^2+x-1)=0
<=>2x+1=0 hoặc x^2+x-1=0
<=> x=-1/2 ,x=-1+căn5/2,x=-1-căn5/2
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^4-4x^3+12x-9=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2-3x^2+3x+9x-9=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-3x+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-3\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-1=0\)hoặc \(x^2-3=0\)hoặc \(x-3=0\)
\(\Leftrightarrow x=1\)hoặc \(x=\pm\sqrt{3}\)hoặc \(x=3\)
Vậy tập nghiệm của phương trình là : \(S=\left\{1;\pm\sqrt{3};3\right\}\)
b) \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)
\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^3-4x\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=0\)hoặc \(x=\pm2\)hoặc \(x=\pm1\)
Vậy tập nghiệm của phương trình là : \(S=\left\{0;\pm2;\pm1\right\}\)
c) \(x^4-4x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x-1=0\)
hoặc \(x^2+x+2=\left(x+\frac{1}{2}^2\right)+\frac{7}{4}=0\left(ktm\right)\)
hoặc \(x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,PT\Leftrightarrow8x^3-6x^2+4x-3=3x^3-36x^2+x-12\)
\(\Leftrightarrow5x^3+30x^2+3x+9=0\)
\(\Leftrightarrow x=-5,95...\)
\(b,PT\Leftrightarrow2x+22-3x^2-33x=6x-15x^2-4+10x\)
\(\Leftrightarrow12x^2-47x+26=0\)
<=> (3x - 2)(4x - 13) = 0
<=> x = 2/3 hoặc x = 13/4
c, Tách ra <=> (2x - 1)(2x - 5) = 0 <=> ...
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm
a) x²( x - 5 ) + x² - 5x + x - 5 = 0
<=> x²( x - 5 ) + x( x + 1 ) - 5( x + 1 ) = 0
<=> x²( x - 5 ) + ( x + 1 )( x - 5 ) = 0
<=> ( x - 5 )( x² + x + 1 ) = 0
Vì x² + x + 1 luôn lớn hơ. 0
=> x - 5 = 0
=> x = 5
Vậy x = 5 là nghệm phương trình.
b) x6 - 1 = 0
<=> ( x³ )² - 1 = 0
<=> ( x³ - 1 )( x³ + 1 ) = 0
<=> x³ - 1 = 0 hoặc x³ + 1 = 0
<=> x³ = 1 hoặc x³ = -1
<=> x = 1 hoặc x = -1
Vậy tập nghiệm của phương trình trên là: S = { 1; -1 }
a) \(x^2\left(x-5\right)+x^2-4x-5=0\)
\(\Leftrightarrow x^2\left(x-5\right)+\left(x+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x^2+x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{5\right\}\)
b) \(x^6-1=0\)
\(\Leftrightarrow\left(x^3-1\right)\left(x^3+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\)\(x-1=0\)(tm)
hoặc \(x^2+x+1=0\)(ktm)
hoặc \(x+1=0\)(tm)
hoặc \(x^2-x+1=0\)(ktm)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-1\right\}\)
\(-x^2-4x+160=0\)
\(\Leftrightarrow x^2+4x-160=0\Leftrightarrow x^2+4x+4-164=0\)
\(\Leftrightarrow\left(x+2\right)^2-\sqrt{164}^2=0\Leftrightarrow\left(x+2\right)^2-\left(2\sqrt{41}\right)^2=0\)
\(\Leftrightarrow\left(x+2-2\sqrt{41}\right)\left(x+2+2\sqrt{41}\right)=0\)
\(\Leftrightarrow x=2\pm2\sqrt{41}\)
Vậy tập nghiệm của phương trình là S = { \(2\pm2\sqrt{41}\)}
-x2 - 4x + 160 = 0
<=> -x2 - 4x - 4 + 164 = 0
<=> 164 - (x + 2)2 = 0
<=> \(\left(\sqrt{164}+x+2\right)\left(\sqrt{164}-x-2\right)=0\)
<=> \(\orbr{\begin{cases}x=-2-\sqrt{164}\\x=2-\sqrt{164}\end{cases}}\)
Vậy \(x\in\left\{-2-\sqrt{164};2-\sqrt{164}\right\}\)là nghiệm phương trình