Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
đk: \(x\ge2\)
Đặt y = \(\sqrt{x+2}\) ta biến pt về dạng pt thuần nhất bậc 3 đối vs x và y:
ta có : \(x^3-3x^2+2y^3-6x=0\)
\(\Leftrightarrow x^3-3xy^2+2y^3=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)
ta sẽ có nghiệm : \(x=2;x=2-2\sqrt{3}\)
\(1.đk:\left(x+2\right)^3\ge0\Leftrightarrow x\ge-2\)
\(pt\Leftrightarrow x^3-3x\left(x+2\right)+2\sqrt{\left(x+2\right)^3}=0\)
\(\Leftrightarrow x^3-x\left(x+2\right)+2\sqrt{\left(x+3\right)^2}-2x\left(x+2\right)=0\)
\(\Leftrightarrow x\left[x^2-\left(x+2\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)
\(\Leftrightarrow x\left[\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+2}-x\right)\left[-x\left(\sqrt{x+2}+x\right)+2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(\sqrt{x+2}-x\right)^2\left(2\sqrt{x+2}+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=x\left(2\right)\\2\sqrt{x+2}=-x\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=x+2\end{matrix}\right.\)\(\Leftrightarrow x=2\left(tm\right)\)
\(\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}-x\ge0\Leftrightarrow x\le0\\x^2=4\left(x+2\right)\end{matrix}\right.\)\(\Leftrightarrow x=2-2\sqrt{3}\left(tm\right)\)
Ta co:
\(\left|x-2016\right|+\left|x-2018\right|=\left|x-2016\right|+\left|2018-x\right|\ge\left|x-2016+2018-x\right|=2\)
\(\left|x-2017\right|\ge0\)
\(\Rightarrow\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\ge2\)
Dau "=" xay ra tai \(\hept{\begin{cases}2016\le x\le2018\\x=2017\end{cases}}\)
Vay x=2017
Đặt \(2x^2+x-2018=a;x^2-5x-2017=b\) ta có :
\(a^2+4b^2=4ab\)
\(\Leftrightarrow\)\(a^2-4ab+4b^2=0\)
\(\Leftrightarrow\)\(\left(a-2b\right)^2=0\)
\(\Leftrightarrow\)\(a-2b=0\)
\(\Leftrightarrow\)\(2x^2+x-2018-2\left(x^2-5x-2017\right)=0\)
\(\Leftrightarrow\)\(2x^2+x-2018-2x^2+10x+4034=0\)
\(\Leftrightarrow\)\(11x+2016=0\)
\(\Leftrightarrow\)\(x=\frac{-2016}{11}\)
Vậy \(x=\frac{-2016}{11}\)
Chúc bạn học tốt ~
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
<=> \(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
<=> \(\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
<=> \(\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
<=> x + 2015 = 0 ( vì \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))
<=> x = - 2015
Vậy x = -2015.
Giải phương trình :
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
\(\Rightarrow\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Mà \(\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)>0\)
\(\Rightarrow x+2015=0\)
\(\Rightarrow x=-2015\)
a) Tìm được x = 2,2
b) Tìm được x = 2073
c) Tìm được x = 4 hoặc x = -2
d) Điều kiện x≠-1 . Tìm được x = 0 hoặc x = 3
\(\frac{2-x}{2016}-1=\frac{1-x}{2017}+\frac{x}{2018}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-2018x}{4070306}+\frac{2017x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-2018x+2017x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1+1=\frac{1-x}{4070306}+1\)
\(\Rightarrow\frac{2-x}{2016}=\frac{1-x+4070306}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}=\frac{4070307-x}{4070306}\)
\(\Rightarrow4070306.\left(2-x\right)=2016.\left(4070307-x\right)\)
\(\Rightarrow8140612-4070306x=8205738912-2016x\)
\(\Rightarrow-4070306x+2016x=8205738912-8140612\)
\(\Rightarrow-4068290x=8197598300\)
\(\Rightarrow x=4,95\)
Vậy x=4,95
Chúc bn học tốt
Bạn viết rõ ra dc ko ạ
Viết này mình ko hiểu