
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Giải \(\Delta\)
Vì x1,x2 là nghiệm của pt =>\(x_1^2-6x_1+2m-3=0;x_2-6x+2m-3=0\)
Áp dụng định lí vi -ét
\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\)
Thay vào ... ta được
\(\left(0+x_1-1\right).\left(0+x_2-1\right)=2\)
\(=>x_1.x_2-\left(x_1+x_2\right)+1=2\)
\(2m-3-6+1=2=>m=5\)(t/m)
Vậy...

\(\left(-5\right)^2-4.\left(-3\right)\left(-2\right)=25-24=1>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)
\(M=x_1+\dfrac{1}{x_1}+\dfrac{1}{x_2}+x_2\\ =\left(x_1+x_2\right)+\dfrac{x_1+x_2}{x_1x_2}\\ =\dfrac{-5}{3}+\dfrac{-5}{3}:\dfrac{2}{3}\\ =\dfrac{-5}{3}-\dfrac{5}{2}\\ =\dfrac{-25}{6}\)
-3x2-5x-2=0
Ta có :-3-(-5)-2=0
=>Phương trình có 2 nghiệm \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-5}{3}\end{cases}}\)
Thay x1;x2 vào M ta được:
M=(-1)+\(\frac{1}{-1}\)+\(\frac{1}{\frac{-5}{3}}\)+\(\frac{-5}{3}\)
=(-1)+(-1)+\(-\frac{3}{5}+-\frac{5}{3}\)
=\(-\frac{64}{15}\)

\(\Delta'=b'^2-ac=m^2-4m+4-2m+1=m^2-6m+5=\left(m-1\right)\left(m-5\right)\)
để pt có 2 nguyện dương =>\(\left(m-1\right)\left(m-5\right)\ge0\Rightarrow\)m>5 hoặc m<1
1 \(\Delta\)=b2-4ac
=9-4{m-1}\(\ge0\)
\(\int^{x_1+x_2=\frac{-b}{a}=3}_{x_1.x_2=\frac{c}{a}=m-1}\)
them ph cua bn nua la ra hpt tim dc x1 x2
`x^{2}+5x-13=76`
`<=>x^{2}+5x-89=0`
\(\Delta=5^2-4.1.\left(-89\right)=381>0\)
`=>` PT có `2` nghiệm phân biệt :
\(x_1=\dfrac{-5+\sqrt{381}}{2}\\ x_2=\dfrac{-5-\sqrt{381}}{2}\)
\(x^2+5x-13=76\)
\(\Leftrightarrow x^2+5x-89=0\)
\(\Delta=5^2-4.1.\left(-89\right)=381>0\)
\(\Rightarrow Pt\) có hai nghiệm phân biệt:
\(x_1=\dfrac{-5+\sqrt{381}}{2};x_2=\dfrac{-5-\sqrt{381}}{2}\)
- Vậy tập nghiệm của phương trình \(S=\left\{\dfrac{-5+\sqrt{381}}{2};\dfrac{-5-\sqrt{381}}{2}\right\}\)