K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2016

ai giải hộ với aaaa

16 tháng 2 2017

Đặt x - 7 = t => x - 8 = t - 1, 15 - 2x = -2t + 1 
thay vào pt được: 
----> t^4 + (t - 1)^4 = (-2t + 1)^4 
<=> t^4 + t^4 - 4t³ + 6t² - 4t + 1 = 16t^4 - 16t³ + 24t² - 8t + 1 
<=> 14t^4 - 12t³ + 18t² - 4t = 0 
<=> t( 14t³ - 12t² + 18t - 4) = 0 
<=> t = 0 hoặc 14t³ - 12t² + 18t - 4 = 0 
+ Với t = 0 => x - 7 = 0 <=> x = 7 
+ Với 14t³ - 12t² + 18t - 4 = 0 --->pt vô no

<=> x-7=7

<=> x=14 

--> S={14}


 

26 tháng 3 2017

do mũ chẵn nên (15-2x)^4=(2x-15)^4

ta có x-7+x-8=2x-15

đặt x-7=a,x-8=b thì 2x-15=a+b

ta có a^4+b^4=(a+b)^4

a^4+b^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4

suy ra 4a^3b+6a^2b^2+4ab^3=0 

2ab(2a^2+3ab+2b^2)=0

suy ra 2ab=0 hoặc 2a^2+3ab+2b^2=0

ta có 2a^2+3ab+2b^2=0

=2a^2+3ab+9/8b^2+2b^2-9/8b^2

=2(a^2+3/2ab+9/16b^2)+7/8b^2

=2(a+3/4b)^2+7/8b^2>=0

dấu = xảy ra khi a=0,b=0

vậy x-7=0 và x-8=0 TH này ko xảy ra do ko đồng nhất nghiệm 

TH 2ab=0

suy ra a=0 hoặc b=0 hoặc cả a và b = 0

như ta đã ns ở trên thì TH cả a và b =0 ko thỏa mãn 

vậy a=0 hoặc b=0

x-7=0 hoặc x-8=0

x=7 hoặc x=8

26 tháng 3 2017

cảm ơn bạn lần 2 nhé

10 tháng 1 2017

Theo bài ra , ta có : 

\(\left(x-7\right)^4+\left(x-8\right)^4=\left(15-2x\right)^4\)

\(\Leftrightarrow x^4-28x^3+294x^2-1372x+2401+x^4-32x^3+384x^2-2048x+4096=\left(15-2x\right)^4\)

\(\Leftrightarrow2x^4-60x^3+678x^2-3420x+6497=50625-27000x+5400x^2-480x^3+16x^4\)

\(\Leftrightarrow-14x^4+420x^3-4722x^2+23580x=44128\)

\(-2x\left(7x^3-210x^2+2361x-11790\right)=44128\)

\(\Leftrightarrow-2x\left(\left(x-15\right)\left(7x^2-105x+786\right)\right)=44128\)

\(\Leftrightarrow x=8\)

Vậy tập nghiệm của phương trình là \(S=\left\{8\right\}\)

Chúc bạn học tốt =)) 

22 tháng 2 2017

x={7;8}

22 tháng 2 2017

Đặt: \(\hept{\begin{cases}x-7=a\\x-8=b\end{cases}\Rightarrow}2x-15=a+b\)

khi đó pt trở thành: \(a^4+b^4=\left(a+b\right)^4\)

\(\Leftrightarrow a^4+b^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

\(\Leftrightarrow4a^3b+6a^2b^2+4ab^3=0\)

\(\Leftrightarrow2ab\left(2a^2+3ab+2b^2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}ab=0\\2a^2+3ab+b^2=0\end{cases}}\)

TH1: \(ab=0\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x-7=0\\x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=8\end{cases}}}\)

TH2: \(2a^2+3ab+2b^2=2\left(a^2+\frac{3}{2}ab+b^2\right)=2\left(a^2+2.a.\frac{3}{4}b+\frac{9}{16}b^2+\frac{7}{16}b^2\right)=2\left(a+\frac{3}{4}b\right)^2+\frac{7}{8}b^2\ge0\)Dấu = xảy ra <=> a=b=0 

hay x-7=x-8=0 (vô nghiệm)

Vậy x=7 hoặc x=8 là nghiệm 

8 tháng 7 2017

\(\left(x-7\right)^4+\left(x-8\right)^4=\left(15-2x\right)^4\)

Đặt \(\hept{\begin{cases}x-7=a\\x-8=b\end{cases}\Rightarrow a+b=2x-15}\)

Ta có:

\(a^4+b^4=\left(a+b\right)^4\)

\(\Leftrightarrow2ab^3+3a^2b^2+2a^3b=0\)

\(\Leftrightarrow ab\left(2a^2+3ab+2b^2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a=0\\b=0\\2a^2+3ab+b^2=0\end{cases}}\)

Với \(a=0\Rightarrow x=7\)

Với \(b=0\Rightarrow x=8\)

Với \(2a^2+3ab+b^2=0\) thì ta nhận xét thấy 

\(2a^2+3ab+b^2\ge0\) nhưng dấu = không xảy ra nên phương trình này vô nghiệm.

Vậy ... 

\(\left(x-7\right)^4+\left(x-8\right)^4=\left(15-2x\right)^4\)

\(\Leftrightarrow\left(x-7\right)2^2+\left(x-8\right)2^2=\left(15-2x\right)2^2\)

\(\Leftrightarrow\left(2x-14\right)^2+\left(2x-16\right)^2=\left(30-4x\right)^2\)

\(\Leftrightarrow4x^2-56x+196+4x^2-64x+256=\left(30-4x\right)^2\)

\(\Leftrightarrow8x^2-120x+452=900-240x+16x^2\)

\(\Leftrightarrow8x^2-120x+452-900+240x-16x^2=0\)

\(\Leftrightarrow-8x^2+120x-448=0\)

\(\Leftrightarrow-\left(8x^2-120x+448\right)=0\)

tự làm tiếp nha

16 tháng 2 2017

(x - 7)^4 + (x - 8)^4 = (15 - 2x)^4
Đặt x - 7 = t

\(\Rightarrow\)x - 8 = t - 1 và 15 - 2x = -2t + 1
thay vào pt được:
\(\rightarrow\)t^4 + (t - 1)^4 = (-2t + 1)^4
\(\Leftrightarrow\) t^4 + t^4 - 4t³ + 6t² - 4t + 1 = 16t^4 - 16t³ + 24t² - 8t + 1
\(\Leftrightarrow\) 14t^4 - 12t³ + 18t² - 4t = 0
\(\Leftrightarrow\) t( 14t³ - 12t² + 18t - 4) = 0
\(\Leftrightarrow\) t = 0 hoặc 14t³ - 12t² + 18t - 4 = 0
+) Với t = 0\(\Leftrightarrow\) x - 7 = 0 \(\Leftrightarrow\) x = 7
+ )Với 14t³ - 12t² + 18t - 4 = 0 \(\Rightarrow\) pt vô nghiệm

\(\rightarrow\) S={7}


24 tháng 3 2020

a) 7x - 35 = 0

<=> 7x = 0 + 35

<=> 7x = 35

<=> x = 5

b) 4x - x - 18 = 0

<=> 3x - 18 = 0

<=> 3x = 0 + 18

<=> 3x = 18

<=> x = 5

c) x - 6 = 8 - x

<=> x - 6 + x = 8

<=> 2x - 6 = 8

<=> 2x = 8 + 6

<=> 2x = 14

<=> x = 7

d) 48 - 5x = 39 - 2x

<=> 48 - 5x + 2x = 39

<=> 48 - 3x = 39

<=> -3x = 39 - 48

<=> -3x = -9

<=> x = 3

19 tháng 5 2021

có bị viết nhầm thì thông cảm nha!

9 tháng 5 2021

a,\(2x+5=2-x\)

\(< =>2x+x+5-2=0\)

\(< =>3x+3=0\)

\(< =>x=-1\)

b, \(/x-7/=2x+3\)

Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)

\(< =>2x-x+3+7=0\)

\(< =>x+10=0< =>x=-10\)( lọai )

Với \(x< 7\)thì \(PT< =>7-x=2x+3\)

\(< =>2x+x+3-7=0\)

\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )

9 tháng 5 2021

c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)

\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(< =>4x^2-8x+4x-6=x^2-x-6\)

\(< =>4x^2-x^2-4x+x-6+6=0\)

\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)

10 tháng 1 2016

a)<=>(x^2+x-3)(x^2+x-2)-12=(x-2)(x+3)(x^2+x+1)

TH1:=>x-2=0

=>x=2

TH2:x+3=0

=>x=-3

dựa vô bệt thức ta thấy

D<0=> phương trình ko có nghiệm thực

=>x=-3 hoặc 2

nhớ tick nhé

10 tháng 1 2016

a)x=-3 hoặc 2