K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TH1 : Xét \(x< -2\)

\(\Leftrightarrow\left|x+2\right|+\left|7-x\right|=3x+4\)

\(\Leftrightarrow-x-2+7-x=3x+4\)

\(\Leftrightarrow-2x+5=3x+4\)

\(\Leftrightarrow x=\frac{1}{5}\)( loại )

TH2 : Xét \(-2< x< 7\)

\(\Leftrightarrow\left|x+2\right|+\left|7-x\right|=3x+4\)

\(\Leftrightarrow x+2+7-x=3x+4\)

\(\Leftrightarrow x=\frac{5}{3}\left(TM\right)\)

TH3 : Xét \(x\ge7\)

\(\Rightarrow x+2+7+x=3x+4\)

\(\Leftrightarrow x=-9\)( loại )

25 tháng 4 2021
\(x\)\(-\infty\)                     \(-2\)                   \(7\)                          \(+\infty\)      
\(x+2\) \(-----\) \(0\) \(++++++++++\)
\(7-x\)\(++++++++++\)\(0\)\(------\)

Nếu \(x< -2\)

\(\rightarrow-\left(x+2\right)+\left(7-x\right)=3x+4\)

\(\Leftrightarrow-x-2+7-x-3x-4=0\)

\(\Leftrightarrow-5x=-1\)

\(\Leftrightarrow x=\frac{1}{5}\left(ktm\right)\)

Nếu \(-2\le x\le7\\ \rightarrow\left(x+2\right)+\left(7-x\right)=3x+4\)

\(\Leftrightarrow x+2+7-x=3x+4\)

\(\Leftrightarrow9-4=3x\\ \Leftrightarrow5=3x\)

\(\Leftrightarrow x=\frac{5}{3}\left(tm\right)\)

Nếu \(x>7\)

\(\rightarrow\left(x+2\right)-\left(7-x\right)=3x+4\)

\(\Leftrightarrow x+2-7+x=3x+4\)

\(\Leftrightarrow2x-5=3x+4\\ \Leftrightarrow x=-9\left(ktm\right)\)

Vậy, \(S=\left\{\frac{5}{3}\right\}\)

@Cừu

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

2 tháng 6 2018

a) \(x^3+x^2+2x-16\ge0\)

\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)

Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)

Cho nên \(x-2\ge0\)

\(\Leftrightarrow x\ge2\)

27 tháng 5 2018

a,x^3-2x^2+3x^2-6x+8x-16>=0

(x^2+3x+8)(x-2)>=0

x^2+3x+8>0

=> để lớn hơn hoac bang 0 thì x-2 phải>=0

=>x>=2

b,hình như là vô nghiệm ko chắc chắn lắm

14 tháng 2 2020

a) \(\left(2x+3\right)^2-3\left(x-4\right)\left(x+4\right)=\left(x-2\right)^2+1\)

\(\Leftrightarrow4x^2+12x+9-3\left(x^2-16\right)=x^2-4x+4+1\)

\(\Leftrightarrow4x^2+12x+9-3x^2+48=x^2-4x+5\)

\(\Leftrightarrow x^2+12x+57=x^2-4x+5\)

\(\Leftrightarrow16x+52=0\)

\(\Leftrightarrow x=-\frac{13}{4}\)

b) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow\)Xem lại đề !

c) \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)

\(\Leftrightarrow x^2-x-x^2-x+12=5x\)

\(\Leftrightarrow-2x+12=5x\)

\(\Leftrightarrow7x-12=0\)

\(\Leftrightarrow x=\frac{12}{7}\)

d) \(\left(2x+1\right)\left(2x-1\right)=4x\left(x-7\right)-3x\)

\(\Leftrightarrow4x^2-1=4x^2-28x-3x\)

\(\Leftrightarrow28x+3x-1=0\)

\(\Leftrightarrow31x-1=0\)

\(\Leftrightarrow x=\frac{1}{31}\)

14 tháng 2 2020

a) (2x + 3)2 - 3 (x - 4) (x + 4)= (x - 2)2 + 1

<=> 4x^2 + 12x + 9 - 3(x^2 - 16) = x^2 - 4x + 4 + 1 

<=> 4x^2 + 12x + 9 - 3x^2 + 48 = x^2 - 4x + 5

<=> x^2 + 12x + 57 = x^2 - 4x + 5

<=> x^2 - x^2 + 12x + 4x + 57 - 5 = 0

<=> 16x + 52 = 0

<=> 16x = -52

<=> x = -13/4

17 tháng 3 2020

\(\text{GIẢI :}\)

ĐKXĐ : \(x\ne-1,\text{ }x\ne0\)

\(\frac{1}{x+1}+\frac{7}{3x}=1\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{7}{3x}=\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{7}{3x}-\frac{3}{2}=0\)

\(\Leftrightarrow\frac{6x}{6x\left(x+1\right)}+\frac{14\left(x+1\right)}{6x\left(x+1\right)}-\frac{9x\left(x+1\right)}{6x\left(x+1\right)}=0\)

\(\Rightarrow6x+14\left(x+1\right)-9x\left(x+1\right)=0\)

\(\Leftrightarrow6x+14x+14-9x^2-9x=0\)

\(\Leftrightarrow-9x^2+11x+14=0\)

\(\Leftrightarrow-9x^2+18x-7x+14=0\)

\(\Leftrightarrow\text{ }(-9x^2+18x)-\left(7x-14\right)=0\)

\(\Leftrightarrow-9x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-9x+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\-9x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\-9x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-\frac{7}{9}\end{cases}}}\)

Kiểm tra lại, ta thấy các giá trị của \(x \) vừa tìm được thỏa mãn ĐKXĐ.

Vậy tập nghiệm của phương trình là \(S=\left\{2;-\frac{7}{9}\right\}.\)

2 tháng 2 2020

\((3x-2)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)

\(\Leftrightarrow3x-2=0\) hoặc \(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\)

  • \(3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\) ;
  • \(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\Leftrightarrow\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\Leftrightarrow10\left(x+3\right)=7\left(4x-3\right)\Leftrightarrow x=\frac{17}{6}\).

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{2}{3};\frac{7}{16}\right\}\).

2 tháng 2 2020

\(\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=2\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\10\left(x+3\right)=7\left(4x-3\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)

vậy x=2/3 hoặc x=17/6

6 tháng 4 2020

\(\text{GIẢI :}\)

ĐKXĐ : \(x\ne-1\)

\(\frac{3x}{2}+\frac{x}{x+1}=2\)

\(\Leftrightarrow\frac{3x\left(x+1\right)}{2\left(x+1\right)}+\frac{2x}{2\left(x+1\right)}=\frac{4\left(x+1\right)}{2\left(x+1\right)}\)

\(\Rightarrow3x\left(x+1\right)+2x=4\left(x+1\right)\)

\(\Leftrightarrow3x\left(x+1\right)+2x-4\left(x+1\right)=0\)

\(\Leftrightarrow3x^2+3x+2x-4x-4=0\)

\(\Leftrightarrow3x^2+x-4=0\)

\(\Leftrightarrow3x^2-3x+4x-4=0\)

\(\Leftrightarrow3x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\3x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{4}{3}\end{cases}}\)

2 ngiệm vừa tìm được đều thỏa mãn ĐKXĐ.

Vậy tập nghiệm của phương trình là \(S=\left\{1;-\frac{4}{3}\right\}.\)

6 tháng 4 2020

3x/2 + x/x+1 = 2  <=>  3x(x+1)/2(x+1) + 2x/2(x+1) = 4(x+1)/2(x+1) \(\frac{3}{2}\). NHÂN PHÁ NGOẶC VÀ KHỬ MẪU TA ĐC: 

<=> 3x2 + 3x + 2x = 4x + 4  <=>  3x2 + x - 4 = 0\(\Delta\) 

Đen - ta (kí hiệu tam giác) = b2 - 4ac = 12 - 4.(-4).3 = 1 + 48 = 49 > 0  => Phương trình có 2 nghiệm phân biệt : 

x1 = -b+ căn đen ta / 2a = -1 + căn 49 / 2.3 = 6/6 =1

x2 = -b - căn đen ta / 2a = -1 - căn 49 / 2.3 = -8/6

Vậy phương trình có 2 nghiệm phân biệt là : S\(\hept{\begin{cases}\\\end{cases}}1,-\frac{8}{6}\)

8 tháng 2 2021

a) \(\left(2x+3\right)\left(x-3\right)+x\left(x-2\right)=3\left(x-2\right)^2\)

\(\Leftrightarrow2x^2-3x-9+x^2-2x=3\left(x^2-4x+4\right)\)

\(\Leftrightarrow3x^2-5x-9=3x^2-12x+12\)

\(\Leftrightarrow7x=21\Rightarrow x=3\)

b) \(\left(4x+7\right)\left(x-3\right)-x^2=3x\left(x+2\right)\)

\(\Leftrightarrow4x^2-5x-21-x^2=3x^2+6x\)

\(\Leftrightarrow11x=-21\Rightarrow x=-\frac{21}{11}\)

8 tháng 2 2021

a,X=3

CBHT

6 tháng 4 2021

( x + 2 ) ( x2 - 3x + 5 ) = ( x + 2 )

<=> x2 - 3x + 5 = 1

<=> x2 - 3x + 4 = 0

<=> x2 - 3x + 9/4 + 7/4 = 0

<=> ( x - 3/2 )2 = - 7/4 ( mâu thuẫn )

=> Pt vô nghiệm

\(\frac{x}{x-3}>1\)<=> \(\frac{x}{x-3}-1>0\)

<=>\(\frac{x-\left(x-3\right)}{x-3}>0\)<=>\(\frac{3}{x-3}>0\)

<=> x - 3 > 0 <=> x > 3

6 tháng 4 2021

a) 

\(x=-2,\frac{3+i\sqrt{7}}{2},\frac{3-i\sqrt{7}}{2}\)

b) \(x>3\)

Ký hiệu khoảng:

\(\left(3,\infty\right)\)

11 tháng 1 2016

 

( x2 - 2x +4 )( x+3x + 4 ) = 14x2

Đặt t=x2-2x+4 ta được:

t.(t+5x)=14x2

<=>t2+5tx=14x2

<=>t2+5tx-14x2=0

<=>t2-2tx+7tx-14x2=0

<=>t.(t-2x)+7x.(t-2x)=0

<=>(t-2x)(t+7x)=0

<=>t-2x=0 hoặc t+7x=0

<=>x2-2x+4-2x=0 hoặc x2-2x+4+7x=0

<=>x2-4x+4=0 hoặc x2+5x+4=0

<=>(x-2)2=0 hoặc x2+4x+x+4=0

<=>x-2=0 hoặc x.(x+4)+(x+4)=0

<=>x=2 hoặc (x+4)(x+1)=0

<=>x=2 hoặc x=-4 hoặc x=-1

11 tháng 1 2016

ccamr ơn rất rất nhìu