Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\left(x+3\right)\sqrt{15-x^2}=\left(x-3\right)\left(x+4\right)\)
<=> \(\left(x-3\right)\left(\sqrt{15-x^2}-x-4\right)=0\)
đến đây dễ rồi
a, tìm trong nâng cao phát triển tập 2
b,
ta thấy VT là 1 tam thức bậc 2 nên ta đặt \(\sqrt{\frac{x+3}{2}}=ay+b\)
<=>x+3=2a2y2+4aby+2b2
<=>ax+3a=2a3y2+4a2by+2ab2
<=>ax+3a-2ab2=2a3y2+4a2by
\(\Leftrightarrow\hept{\begin{cases}2x^2+4x=ay+b\\2a^3y^2+4a^2by=ax+3a-2ab^2\end{cases}}\)
đưa hệ này về hệ đối xứng thì ta có:\(\hept{\begin{cases}a^3=1\\a^2b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)
\(\Rightarrow\sqrt{2x-1}=y+1\)
sau đó đưa về hệ đối xứng là được
Trên tia đối tia CB lấy F sao cho AM = 2CF
\(\Delta DCF\approx\Delta DAM\left(c-g-c\right)\)
\(\Rightarrow DM=2DF\) và \(\widehat{ADM}=\widehat{CDF}\) nên \(\widehat{MDF}=90^0\) hay \(\Rightarrow\widehat{EDF}+\widehat{MDE}=90^0\) (1)
Lại có \(\widehat{DEC}+\widehat{EDC}=90^0\) \(\Rightarrow\widehat{DEC}+\widehat{MDE}=90^0\) (2)
(1), (2) => \(\widehat{EDF}=\widehat{DEC}\) nên DF = EF
Lại có \(DM=2DF=2EF=2CF+2EC=AM+2EC\)
Done!
ĐK: \(x\ge\frac{3}{2}\)
\(\sqrt{2x-3}+3=x\)
<=> \(\sqrt{2x-3}=x-3\) (đk: \(x\ge3\))
=> \(2x-3=\left(x-3\right)^2\)
<=> \(2x-3=x^2-6x+9\)
<=> \(x^2-8x+12=0\) <=> \(\left(x-6\right)\left(x-2\right)=0\)
=> \(\orbr{\begin{cases}x=6\left(TMĐK\right)\\x=2\left(KTMĐK\right)\end{cases}}\)
Hai câu sau tương tự nhé bn
\(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\)
<=> \(2x\sqrt{3}+3\sqrt{2}=2x\sqrt{2}+3\sqrt{3}\)
<=> \(2x\sqrt{3}-2x\sqrt{2}=3\sqrt{3}-3\sqrt{2}\)
<=> \(2x\left(\sqrt{3}-\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\)
<=> \(2x=3=>x=\frac{3}{2}\)
\(\sqrt{x^2-2x+2}=x-2\)
\(\Leftrightarrow\sqrt{\left(x^2-2x+2\right)^2}=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-2x+2=x^2-4x+4\)
\(\Leftrightarrow x^2-x^2-2x+4x=4-2\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)
\(a,\sqrt[3]{x+1}=x+1\)
\(\Leftrightarrow\left(x+1\right)=\left(x+1\right)^3\)
\(\Leftrightarrow\left(x+1\right)\left[\left(x+1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1+1\right)\left(x+1-1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow x=0\left(h\right)x=-1\left(h\right)x=-2\)
\(\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}=\sqrt{3}-x^2\)
\(\Leftrightarrow\sqrt{-x^2+4x+12}=\sqrt{3}-x^2+\sqrt{-x^2+2x+3}\)
\(VP=\sqrt{-x^2+4x+12}=\sqrt{-\left(x-2\right)^2+16}\le4\)
\(VT=\sqrt{3}-x^2+\sqrt{-x^2+2x+3}=\sqrt{3}-x^2+\sqrt{-\left(x-1\right)^2+4}\)
\(\le\sqrt{3}+2<\sqrt{4}+2=4\)
\(\Rightarrow VP\ne VT\) =>PT vô nghiệm
Dat \(\sqrt[3]{12-x}=a;\)\(\sqrt[3]{x+15}=b\)
Khi do ta co: \(\hept{\begin{cases}a+b=3\\a^3+b^3=27\end{cases}}\) <=> \(\hept{\begin{cases}a=3-b\\a^3+b^3=27\end{cases}}\) <=> \(\hept{\begin{cases}a=3-b\\\left(3-b\right)^3+b^3=27\end{cases}}\)
<=> \(\hept{\begin{cases}a=3-b\\9\left(b^2-3b+3\right)=27\end{cases}}\) <=> \(\hept{\begin{cases}a=3-b\\b^2-3b+3=3\end{cases}}\) <=> \(\hept{\begin{cases}a=3-b\\b\left(b-3\right)=0\end{cases}}\)
Xet: \(b\left(b-3\right)=0\)
<=> \(\orbr{\begin{cases}b=0\\b=3\end{cases}}\)
Đến đây tự giải