Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2-x+2x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x-1+1\right)\left(x^2+x-1-1\right)=24\)
\(\Leftrightarrow\left(x^2+x-1\right)^2-1=24\)
\(\Leftrightarrow\left(x^2+x-1\right)^2=25\)
<=> 2 trường hợp sảy ra là bằng 5 hoặc -5 nhé
\(\left(x-5\right)\left(x-1\right)=2x\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-5-2x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy............
\(5\left(x+3\right)\left(x-2\right)-3\left(x+5\right)\left(x+2\right)=0\)
\(\Leftrightarrow5\left(x^2+x-6\right)-3\left(x^2+7x+10\right)=0\)
\(\Leftrightarrow2x^2-16x-60=0\)
\(\Leftrightarrow x^2-8x-30=0\)
làm tiếp nhé!!!!!
\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)
\(\Rightarrow x=\pm1\)
Giúp tớ mấy câu còn lại đi các cậu, tớ cần gấp lắm ạ ;;-;;
a) đặt \(\left(x^2+x\right)\)là \(y\)
ta có: \(3y^2-7y+4\)\(=0\)
<=>\(\left(3y-4\right)\left(y-1\right)=0\)
còn lại bạn tự xử nhé
với x=1 không phải nghiêm
(x-1) khác 0
nhân hai vế với (x-1)
x^16-1=x-1
=> x^16=x=> x=0
Làm gọn thế :)
Ta dễ thấy x = 1 không phải là nghiệm của pt nên ta nhân 2 vế cho (x - 1)
\(\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)=x-1\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)=x-1\)
\(\Leftrightarrow\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)=x-1\)
\(\Leftrightarrow\left(x^8-1\right)\left(x^8+1\right)=x-1\)
\(\Leftrightarrow\left(x^{16}-1\right)=x-1\)
\(\Leftrightarrow x^{16}-x=0\)
\(\Leftrightarrow\left(x-1\right)x\left(x^2+x+1\right)\left(x^4+x^3+x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)=0\)
\(\Leftrightarrow x=0\)(mấy cái còn lại đều khác 0 hết)
a) \(\left(x-3\right)^2-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)-\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x^2-6x+9-x^2-2x-1=0\)
\(\Leftrightarrow-8x+8=0\Leftrightarrow-8\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy phương trình có tập nghiệm S = {1}
b) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)-\left(x^2-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)
<=> x - 2 = 0 hoặc x + 2 = 0 hoặc x + 4 = 0
<=> x = 2 hoặc x = -2 hoặc x = -4
Vậy phương trình có tập nghiệm S = { 2; -2; -4 }
c) \(\left(3x-7\right)^2-4\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(9x^2-42x+49\right)-4\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow9x^2-42x+49-4x^2-8x-4=0\)
\(\Leftrightarrow5x^2-50x+45=0\Leftrightarrow5\left(x-1\right)\left(x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=9\end{cases}}\)
Vậy phương trình có tập nghiệm S = { 1; 9 }
TA CÓ:
\(a,\left(4x-1\right)\left(x-3\right)=\left(x-3\right)\left(5x+2\right)\Leftrightarrow\left(4x-1\right)\left(x-3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\left(x-3\right)\left(4x-1-5x-2\right)=0\Leftrightarrow\left(x-3\right)\left(-x-3\right)=0\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
\(b,\left(x+3\right)\left(x-5\right)+\left(x+3\right)\left(3x-4\right)=0\Leftrightarrow\left(x+3\right)\left(x-5+3x-4\right)=0\)
\(\left(x-3\right)\left(4x-9\right)=0\orbr{\begin{cases}x=3\\x=\frac{9}{4}\end{cases}}\)
\(c,\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\Leftrightarrow\left(1-x\right)\left(5x+3\right)=\left(7-3x\right)\left(1-x\right)\)
\(\left(1-x\right)\left(5x+3-7+3x\right)=0\Leftrightarrow\left(1-x\right)\left(8x-4\right)=0\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
b) Đặt \(x-7=a\) ta có:
\(\left(a+1\right)^4+\left(a-1\right)^4=16\)
\(\Leftrightarrow\)\(a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1=16\)
\(\Leftrightarrow\)\(2a^4+12a^2+2-16=0\)
\(\Leftrightarrow\)\(2\left(a^4+6a^2-7\right)=0\)
\(\Leftrightarrow\)\(a^4+6a^2-7=0\)
\(\Leftrightarrow\)\(\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)
Vì \(a^2+7>0\) nên \(\orbr{\begin{cases}a-1=0\\a+1=0\end{cases}}\)
Thay trở lại ta có: \(\orbr{\begin{cases}x-8=0\\x-6=0\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Vậy...
TH1: \(x\ge2\)
\(\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=4\)
\(\Leftrightarrow x^4-5x^2=0\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\sqrt{5}\left(loại\right)\\x=\sqrt{5}\end{matrix}\right.\)
TH2: \(x< 2\)
\(-\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=4\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=-4\)
\(\Leftrightarrow x^4-5x^2+8=0\)
\(\Leftrightarrow\left(x^2-\dfrac{5}{2}\right)^2+\dfrac{7}{4}=0\) (vô nghiệm)
Vậy \(x=\sqrt{5}\)