\(\frac{\left(1.2+2.3+3.4+...+98.99\right).x}{323400}=323400\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2021

Đặt \(A=1.2+2.3+3.4+......+98.99\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+......+98.99.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.....+98.99.\left(100-97\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+98.99.100-97.98.99\)

\(=98.99.100=970200\)

\(\Rightarrow A=\frac{970200}{3}=323400\)

Ta có: \(\frac{\left(1.2+2.3+3.4+....+98.99\right).x}{323400}=323400\)

\(\Leftrightarrow\frac{323400.x}{323400}=323400\)\(\Leftrightarrow x=323400\)

Vậy tập nghiệm của phương trình là \(S=\left\{323400\right\}\)

16 tháng 2 2021

Gọi \(A=1.2+2.3+3.4+...+98.99\)

\(3A=1.2.3+2.3.3+3.4.3+...+98.99.3\)

\(=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\)

\(=1.2.3-1.2.0+2.3.4-2.3.1+3.4.5-3.4.2+...+98.99.100-98.99.97\)

\(=98.99.100-1.2.0\)

\(=970200\)

\(A=\frac{970200}{3}\)

\(=323400\)

Ta có : \(\frac{A.x}{323400}=323400\)

\(\Leftrightarrow\frac{323400.x}{323400}=323400\)

\(\Leftrightarrow x=323400\)

Vậy phương trình trên có 1 nghiệm \(x=323400\)

9 tháng 10 2015

ta đặt: A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007

2.A = 2(1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007)

2.A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/2005.2006.2007
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/2005.2006- 1/2006.2007) 
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... +1/2005.2006 - 1/2006.2007
= 1/1.2 - 1/2006.2007

=> A = (1/1.2 - 1/2006.2007):2

       A = 1/4 - 1/1003.2007

 

Đặt B = 1/1.2 + 1/2.3+ 1/ 3.4 ..... + 1/2006.2007 

         =(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/2006-1/2007)

          =1/1-1/2+1/2-1/3+1/3-1/4+....+1/2006-1/2007
         =1/1-1/2007

        = 2006/2007

thay vào phương trình ta có phương trình trở thành:

(1/4 - 1/1003.2007).x = 2006/2007

..........

còn lại bạn tính nhé

 

 

 

12 tháng 8 2017

đấy mấy thằng đứng đầu bảng xếp hạng làm đi
 

12 tháng 8 2017

Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{2005.2006.2007}\)

\(B=1.2+2.3+3.4+....+2006.2007\)

Ta có : \(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2006.2007}\right)\)

\(B=1.2+2.3+3.4+....+2006.2007\)

\(=\frac{1.2.3+2.3.\left(4-1\right)+3.5.\left(5-2\right)+...+2006.2007.\left(2008-2005\right)}{3}\)

\(=\frac{1.2.3+2.3.4-1.2.3+3.4.5-...+2006.2007.2008-2005.2006.2007}{3}\)

\(=\frac{2006.2007.2008}{3}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)x=\frac{2006.2007.2008}{3}\)

\(\Rightarrow x=\frac{2006.2007.2008}{3}:\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)\right]\)(tự tính)

12 tháng 2 2020

Đặt \(NCTK=VT\)

\(\Rightarrow2NCTK=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...\)

\(+\frac{1}{2005.2006}-\frac{1}{2006.2007}\)

\(\Rightarrow2NCTK=\frac{1}{2}-\)\(\frac{1}{2006.2007}\)

\(\Rightarrow NCTK=\frac{1}{4}-\frac{1}{2.2006.2007}\)

Đặt \(KN=1.2+2.3+...+2006.2007\)

\(3KN=1.2.3+2.3.\left(4-1\right)+...+2006.2007\left(2008-2005\right)\)

\(=2006.2007.2008\)

\(KN=\frac{2006.2007.2008}{3}\)

...

16 tháng 8 2016

\(\frac{2}{1.2}+\frac{2}{2.3}+..........+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)

\(\Rightarrow2\left(\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{x\left(x+1\right)}\right)=\frac{4028}{2015}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..........+\frac{1}{x}-\frac{1}{x+1}=\frac{4028}{2015}:2\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{2014}{2015}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{2014}{2015}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)

\(\Rightarrow x+1=2015\Rightarrow x=2014\)

16 tháng 8 2016

\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)

\(2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x\times\left(x+1\right)}\right)=1\frac{2013}{2015}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=1\frac{2013}{2015}\div2\)

\(1-\frac{1}{x+1}=\frac{2014}{2015}\)

\(\frac{1}{x+1}=1-\frac{2014}{2015}\)

\(\frac{1}{x+1}=\frac{1}{2015}\)

\(x+1=2015\)

\(x=2015-1\)

\(x=2014\)

7 tháng 8 2017

Ta có: 

\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)\(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\); ...; \(\frac{2}{2005.2006.2007}=\frac{1}{2005.2006}-\frac{1}{2006.2007}\)

\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)\)

\(A=\frac{1}{2}\left(\frac{1003.2007-1}{2006.2007}\right)\)

B=1.2+2.3+3.4+...+2006.2007=\(\frac{2006.2007.2008}{3}\)

Ta có: A.x=B  => x=B:A = \(\frac{2006.2007.2008}{3}:\left\{\frac{1}{2}.\frac{1003.2007-1}{2006.2007}\right\}=\frac{2006.2007.2008}{3}.\frac{2.2006.2007}{1003.2007-1}\)

=> \(x=\frac{2.2006^2.2007^2.2008}{6039060}=2676.2007^2\)

4 tháng 7 2017

ta đặt: A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007

          2.A = 2(1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007)

          2.A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/2005.2006.2007

          = (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/2005.2006- 1/2006.2007)

          = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... +1/2005.2006 - 1/2006.2007

          = 1/1.2 - 1/2006.2007

          => A = (1/1.2 - 1/2006.2007):2

          A = 1/4 - 1/1003.2007

Đặt B = 1/1.2 + 1/2.3+ 1/ 3.4 ..... + 1/2006.2007

         =(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/2006-1/2007)

         =1/1-1/2+1/2-1/3+1/3-1/4+....+1/2006-1/2007

          =1/1-1/2007 = 2006/2007

thay vào ta được phương trình trở thành:

(1/4 - 1/1003.2007).x = 2006/2007

.......... 

11 tháng 2 2018

Bài này không tính nhé tth nghĩ nát óc mới ra :3

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2005.2006.2007}\right)x=1.2\left(3-0\right)+2.3\left(4-1\right)+...+2006+2007\left(2008-2005\right)\)\(3\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2005.2006.2007}\right)x=2\left(1.2\left(3-0\right)+2.3+...+2006+2007\right)\)

\(2\left(1.2.3+2.3.4-1.2.3+...+2006+2007.2008-2005.2006.2007\right)\)

Đến đây rồi tự làm tiếp đi nhé