Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{3+2x}{2+x}-1=\frac{2-x}{2+x}\) (x khác -2)
\(\Leftrightarrow\frac{3+2x}{2+x}-\frac{2-x}{2+x}=1\)
\(\Leftrightarrow\frac{1+3x}{2+x}=1\)
\(\Leftrightarrow1+3x=2+x\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
b) \(\frac{5-2x}{3}+\frac{x^2-1}{3}x-1=\frac{\left(x-2\right)\left(1-3x\right)}{9x-3}\) (x khác 1/3)
\(\Leftrightarrow\frac{x^3-3x+5}{3}+\frac{\left(x-2\right)\left(3x-1\right)}{3\left(3x-1\right)}=1\)
\(\Leftrightarrow\frac{x^2-2x+3}{3}=1\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c) \(\frac{1}{\left(3-2x\right)^2}-\frac{4}{\left(3+2x\right)^2}=\frac{3}{9-4x^2}\) (x khác +- 3/2)
\(\Leftrightarrow\frac{\left(3+2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}-\frac{4\left(3-2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}=\frac{9}{\left(3+2x\right)^2\left(3-2x\right)^2}\)
\(\Leftrightarrow9+12x+4x^2-4\left(9-12x+4x^2\right)-9=0\)
\(\Leftrightarrow-12x^2+60x-36=0\)
\(\Leftrightarrow-12\left(x^2-5x+3\right)=0\Leftrightarrow x^2-5x+3=0\)
\(\Rightarrow\Delta=b^2-4ac=25-12=13>0\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2ac}=\frac{5+\sqrt{13}}{6}\)
\(x_2=\frac{5-\sqrt{13}}{6}\)
d) \(\frac{1}{x^2+2x+1}=\frac{4}{x+2x^2+x^3}=\frac{5}{2x+2x^2}\)
\(\Leftrightarrow\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}=\frac{x^2+2x+1-\left(x+2x^2+x^3\right)+2x+2x^2}{1-4+5}\)
(dấu bằng thứ nhất của câu d là dấu cộng à???)
bài 1:
\(\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}\)
<=>\(\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}+-1\right)+\left(\dfrac{x-6}{1998}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)\)
<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}\)
<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}=0\)
<=>(x-2004)\(\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}\right)\)
vì 1/1994+1/1996+1/1998-1/2-1/4-1/6 khác 0
nên x-2004=0=>x=2004
vyaj.......
bài 2:
\(\dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9}=10\)
<=>\(\left(\dfrac{x-85}{15}-1\right)+\left(\dfrac{x-74}{13}-2\right)+\left(\dfrac{x-67}{11}-3\right)+\left(\dfrac{x-64}{9}-4\right)=0\)
<=>\(\dfrac{x-100}{15}+\dfrac{x-100}{13}+\dfrac{x-100}{11}+\dfrac{x-100}{9}=0\)
<=>\(\left(x-100\right)\left(\dfrac{1}{15}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{9}\right)=0\)
vì 1/15+1/13+1/11+1/9 khác 0
=>x-100=0<=>x=100
a) \(\frac{2x+1}{x-1}\)=\(\frac{5\left(x-1\right)}{x+1}\):dkxd x\(\ne\)\(\pm\)1
\(\Rightarrow\)(2x+1)(x+1)=5(x-1)2
\(\Leftrightarrow\)2x2+2x+x+1=5(x2-2x+1)
\(\Leftrightarrow\)2x2+2x+x+1=5x2-10x+5
\(\Leftrightarrow\)2x2+2x+x+1-5x2+10x-5=0
\(\Leftrightarrow\)-3x2+13x-4=0
\(\Leftrightarrow\)-3x2+12x+1x-4=0
\(\Leftrightarrow\)-4x(x-4)+(x-4)=0
\(\Leftrightarrow\)(x-4)(-4x+1)=0
\(\Leftrightarrow\)x-4=0 hoac -4x+1=0
\(\Leftrightarrow\)x=4(tmdkxd) \(\Leftrightarrow\)x=1/4(tmdkxd)
vay s={4;1/4}
b)\(\frac{x}{x-1}\)-\(\frac{2x}{x^{ }2^{ }-1}\)=0 dkxd x\(\ne\)\(\pm\)1
\(\Leftrightarrow\)\(\frac{x\left(X+1\right)-2x^{ }}{\left(x-1\right)\left(x+1\right)}\)=0
\(\Rightarrow\)x2+x-2x=0
\(\Leftrightarrow\)x2-x=0
\(\Leftrightarrow\)x(x-1)=0
\(\Leftrightarrow\)x=0 hoac x-1=0
\(\Leftrightarrow\)x=0(tmdkxd)\(\Leftrightarrow\)x=1(ktmdkxd)
vay s={0}
c.\(\frac{1}{x-2}\)+3=\(\frac{x-3}{2-x}\) dkxd x\(\ne\)2
\(\Leftrightarrow\)\(\frac{1}{x-2}\)+3=\(\frac{-\left(x-3\right)}{x-2}\)
\(\Leftrightarrow\)\(\frac{1+3\left(x-2\right)}{x-2}\)=\(\frac{-x+3}{x-2}\)
\(\Rightarrow\)1+3x-6=-x+3
\(\Leftrightarrow\)4x=8
\(\Leftrightarrow\)x=2(ktmdkxd)
vay s=\(\varnothing\)
chuc ban hoc tot
a.\(\frac{2x+1}{x-1}\) = \(\frac{5\left(x-1\right)}{x+1}\)
\(\leftrightarrow\) 2x+1 = 5x - 5
\(\leftrightarrow\) 2x - 5= -1-5
\(\leftrightarrow\) -3x = -6
\(\leftrightarrow\) x =2
Vậy S=\(\left\{2\right\}\)
b.\(\frac{x}{x-1}\) - \(\frac{2x}{x^2-1}\) =0
\(\leftrightarrow\) \(\frac{x}{x-1}\) - \(\frac{2x}{\left(x-1\left(x+1\right)\right)}\)= 0 (ĐK : x\(_{\ne}\) -1 và 1)
\(\leftrightarrow\)\(\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\) - \(\frac{2x}{\left(x-1\left(x+1\right)\right)}\) =0
\(\leftrightarrow\) x2 + x -2x = 0
\(\leftrightarrow\)(x2 + x) -2x =0
\(\leftrightarrow\)x(x+1) -2x =0
\(\leftrightarrow\) x =0 -> x=0
x+1 =0 -> x = -1(Loại)
-2x = 0 -> x= 2(TM)
Vậy x =\(\left\{0,2\right\}\)
(BẠN NHỚ COI LẠI CÁI CÂU TRẢ LỜI Ở CUỐI MỖI BÀI NHA ,MÌNH KO CHẮC CÂU TRẢ LỜI ĐÓ )
a) ĐKXĐ : 9x2 - 16 # 0
=> ( 3x - 4)( 3x + 4) # 0
=> x # \(\dfrac{4}{3}\); x # \(-\dfrac{4}{3}\)
Vậy,...
b) ĐKXĐ : x2 - 4x + 4 # 0
=> ( x - 2)2 # 0
=> x # 2
Vậy,...
c) ĐKXĐ : x2 - 1# 0
=> x # 1 ; x # -1
vậy,..
d) ĐKXĐ : 2x2 - x # 0
=> x( 2x - 1) # 0
=> x # 0 ; x # \(\dfrac{1}{2}\)
Vậy,...
a,\(\dfrac{x^2-4}{9x^2-16}\)
Phân thức trên được xác định \(\Leftrightarrow9x^2-16\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-4\ne0\\3x+4\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{4}{3}\\x\ne-\dfrac{4}{3}\end{matrix}\right.\)
Vậy...
b,\(\dfrac{2x-1}{x^2-4x+4}\)
Phân thức trên được xác định \(\Leftrightarrow x^2-4x+4\ne0\)
\(\Leftrightarrow\left(x-2\right)^2\ne0\)
\(\Leftrightarrow x-2\ne0\)
\(\Leftrightarrow x\ne2\)
c,\(\dfrac{x^2-4}{x^2-1}\)
Phân thức trên được xác định \(\Leftrightarrow x^2-1\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
Vậy...
d,\(\dfrac{5x-3}{2x^2-x}\)
Phân thức trên được xác định \(\Leftrightarrow2x^2-x\ne0\)
\(\Leftrightarrow x\left(2x-1\right)\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\2x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
Vậy...
\(x^2+6x+9=\left(x+3\right)^2\)
--
\(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
--
\(x^3+12x^2+48x+64=\left(x+4\right)^3\)
1) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2x^2+50}{x^2+25}\)
\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)
2) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+3^3-54-x^3\)
\(=27-54=-27\)
3) \(\left(2x+y\right)^2-\left(y+3x\right)^2\)
\(=4x^2+4xy+y^2-y^2-6xy-9x^2\)
\(=-5x^2-2xy\)
4) \(\left(2x+1\right)^3-\left(2x-1\right)^3-24x^2\)
\(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-24x^2\)
\(=2\)
Vì \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|>0\forall x\)
mà \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
nên x>0
Với x>0, ta được:
\(x+\frac{1}{101}+x+\frac{2}{101}+x+\frac{3}{101}+...+x+\frac{100}{101}=101x\)
\(\Leftrightarrow100x-101x+\frac{5050}{101}=0\)
\(\Leftrightarrow-x+50=0\)
hay x=50
Vậy: S={50}
cảm ơn