Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
Bài 2:
a, \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)
\(\Leftrightarrow3\left(x-1\right)\left(2x-1\right)-5\left(x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x-3\right)-\left(5x+40\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x-3-5x-40\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-43\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-43=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=43\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{1;43\right\}\)
b, \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow9x^2-1-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(-x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{-\frac{1}{3};-2\right\}\)
c, \(\left(x+7\right)\left(3x-1\right)=49-x^2\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(49-x^2\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(7-x\right)\left(7+x\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1-7+x\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(4x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\4x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{-7;2\right\}\)
d, \(x^3-5x^2+6x=0\)
\(\Leftrightarrow x\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow x\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)
\(\Leftrightarrow x\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{0;2;3\right\}\)
e, \(2x^3+3x^2-32x=48\)
\(\Leftrightarrow2x^3+3x^2-32x-48=0\)
\(\Leftrightarrow\left(2x^3-8x^2\right)+\left(11x^2-44x\right)+\left(12x-48\right)=0\)
\(\Leftrightarrow2x^2\left(x-4\right)+11x\left(x-4\right)+12\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x^2+11x+12\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)+\left(3x+12\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)+3\left(x+4\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{4;-4;3-\frac{3}{2}\right\}\)
Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4