K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

\(lim_{x\rightarrow+\infty}\left(\sqrt{ax^2+bx}-cx\right)=-2\)
\(\Leftrightarrow\sqrt{ax^2+bx}-cx=-2\left(x\rightarrow+\infty\right)\)(1)
\(\Leftrightarrow\frac{ax^2+bx-c^2x^2}{\sqrt{ax^2+bx}+cx}=-2\left(x\rightarrow+\infty\right)\)
\(\Leftrightarrow\frac{x\left(ax+b-c^2x\right)}{x\sqrt{a+\frac{b}{x}}+c}=-2\left(x\rightarrow+\infty\right)\)
\(\Leftrightarrow\frac{x\left(a-c^2\right)+b}{\sqrt{a}+c}=-2 \left(x\rightarrow+\infty\right)\)
\(\Rightarrow x\left(a-c^2\right)+b=-2\left(\sqrt{a}+c\right) \left(x\rightarrow+\infty\right)\)
\(\Leftrightarrow a-c^2=\frac{-2\left(\sqrt{a}+c\right)-b}{x}\left(x\rightarrow+\infty\right)\)
\(\Rightarrow a-c^2=0\Leftrightarrow a=c^2\)
Mà \(c^2+a=18\)suy ra \(\hept{\begin{cases}c=\pm3\\a=9\end{cases}}\)
TH1: c=-3;a=9 thì (1) có giới hạn là vô cùng (loại)
TH2: c=3; a=9 thì (1) tương đương
\(\sqrt{9x^2+bx}-3x=-2\left(x\rightarrow+\infty\right)\)
\(\Leftrightarrow\frac{bx}{x\left(\sqrt{9+\frac{b}{x}}+3\right)}=-2\left(x\rightarrow+\infty\right)\)
\(\Leftrightarrow\frac{b}{6}=-2\Rightarrow b=-12\)
\(\Rightarrow a+b+5c=9-12+5.3=12\)
 

25 tháng 5 2018

Giả sử cạnh hình vuông là a 
\(AM=\frac{a}{2}\)
\(AN=\frac{3a\sqrt{2}}{4}\)
\(MN=\sqrt{\left(2-1\right)^2+\left(-1-2\right)^2}=\sqrt{10}\)
\(Cos\widehat{MAN}=\frac{AM^2+AN^2-MN^2}{2AM.AN}\)
\(\Leftrightarrow\frac{\sqrt{2}}{2}=\frac{\frac{1}{4}a^2+\frac{9}{8}a^2-10}{2.\frac{1}{2}a.\frac{3\sqrt{2}}{4}a}\Rightarrow a=4\)
Giả sử CD: \(\left(d\right):y=ax+b\)
MN cắt CD tại K \(\Rightarrow K\in\left(d\right)\)
Ta có:
\(\Delta MNA\infty\Delta KNC\)
\(\Rightarrow\frac{MN}{NK}=\frac{AN}{NC}=3\)
\(\Leftrightarrow\overrightarrow{MN}=3\overrightarrow{NK}\Rightarrow K\left(\frac{7}{3};-2\right)\)
Do \(K\in\left(d\right)\Rightarrow7a+3b=-6\)(1)
Viết lại \(\left(d\right):ax-y+b=0\)
\(d_{\left(M,\left(d\right)\right)}=4\Rightarrow\frac{\left|a-2+b\right|}{\sqrt{a^2+1}}=4\Leftrightarrow\left(a-2+b\right)^2=16\left(a^2+1\right)\)(2)
Từ (1) và (2) \(\hept{\begin{cases}a=0\\b=-2\end{cases}}\)hoặc \(\hept{\begin{cases}a=\frac{3}{4}\\b=-\frac{15}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\left(d\right):y+2=0\\\left(d\right):3x-4y-15=0\end{cases}}\)

11 tháng 2 2018

a, (3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy...

27 tháng 5 2018

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

11 tháng 2 2018

khó thể xem trên mạng

11 tháng 2 2018

bài 1 câu a bỏ x= nhé !

13 tháng 2 2018

3x3 - 3x2- 6x = 0

x ( 3x2 - 3x - 6 ) = 0

x [ 3x2 + 3x - 6x - 6 ] = 0

x [ 3x ( x + 1 ) - 6 ( x + 1 ) ] = 0

x ( 3x - 6 ) ( x + 1 ) = 0

<=> x = 0 hoặc 3x - 6 = 0 hoặc x + 1 = 0

1) x = 0

2) 3x - 6 = 0 <=> x = 2

3) x + 1 = 0  <=> x = -1

Vậy taaph nghiệm của phương trình đã cho S={0 : -1 : 2 }

13 tháng 2 2018

\(3x^3-3x^2-6x=0\)

\(3x^3-6x^2+3x^2-6x=0\)

\(3x^2.\left(x-2\right)+3x\left(x-2\right)=0\)

\(\left(3x^2+3x\right)\left(x-2\right)=0\)

\(3x\left(x+1\right)\left(x-2\right)=0\)

\(\Rightarrow3x=0\)    \(\Rightarrow x=0\)hoặc \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

3 tháng 4 2020

a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )  

<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0

<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0

<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0

<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)

Vậy x = { \(\frac{-1}{3};-5\)

b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0 

<=> ( x + 5 )2 -4.x . (x + 5 ) = 0

<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0

<=> ( x + 5 ) . ( 5 - 3.x )  = 0

<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)

Vậy x = \(\left\{\frac{5}{3};-5\right\}\)

c) (4.x - 5 )- 2. ( 16.x2 -25 ) = 0 

<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0

<=> (  4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0

<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0

<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0

<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)

Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)

d) ( 4.x + 3 )2 = 4. ( x- 2.x + 1 ) 

<=> 16.x+ 24.x + 9 - 4.x + 8.x - 4 = 0

<=> 12.x2 + 32.x + 5 =0 

<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0 

<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)

Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)

e) x2 -11.x + 28 = 0

<=> x2 -4.x  - 7.x + 28 = 0

<=> ( x - 7 ) . ( x - 4 ) = 0

<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)

Vậy x = { 4 ; 7 } 

f ) 3.x.3 - 3.x2 - 6.x = 0

<=> 3.x. ( x2 -x - 2 ) = 0 

<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)

        \([x=0\)                \([x=0\)

( Lưu ý :Lưu ý này không cần ghi vào vở :  Chị nối 2 ý đó làm 1 nha cj ! ) 

Vậy x = { 2 ; -1 ; 0 } 

a: =>-x+2x=3-7

=>x=-4

b: =>6x+2+2x-5=0

=>8x-3=0

hay x=3/8

c: =>5x+2x-2-4x-7=0

=>3x-9=0

hay x=3

d: =>10x2-10x2-15x=15

=>-15x=15

hay x=-1

Bài 1.       Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:1.  a)  5 – (x – 6) = 4(3 – 2x)               b)  2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4)     c)  7 – (2x + 4) = – (x + 4)             d)  (x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3     e)  (x + 1)(2x – 3) = (2x – 1)(x + 5) f)  (x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)     g)  (x – 1) – (2x – 1) = 9 – x           h)  (x – 3)(x + 4) – 2(3x – 2) = (x – 4)2           i)  x(x + 3)2 – 3x = (x + 2)3 + 1      j)   (x +...
Đọc tiếp

Bài 1.       Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:

1.  a)  5 – (x – 6) = 4(3 – 2x)               b)  2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4)

     c)  7 – (2x + 4) = – (x + 4)             d)  (x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3

     e)  (x + 1)(2x – 3) = (2x – 1)(x + 5) f)  (x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)

     g)  (x – 1) – (2x – 1) = 9 – x           h)  (x – 3)(x + 4) – 2(3x – 2) = (x – 4)2      

     i)  x(x + 3)2 – 3x = (x + 2)3 + 1      j)   (x + 1)(x2 – x + 1) – 2x = x(x + 1)(x – 1)

2. a)                             b)

c)                        d)

     e)                        f)

     g)                  h)

     i)              k)

     m)                    n)

2
1 tháng 2 2022

bạn đăng tách cho mn cùng giúp nhé 

Bài 1 : 

a, \(\Leftrightarrow11-x=12-8x\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)

b, \(\Leftrightarrow2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

\(\Leftrightarrow2x^3+8x^2+8x-8x^2=2x^3-16\Leftrightarrow x=-2\)

c, \(\Leftrightarrow3-2x=-x-4\Leftrightarrow x=7\)

d, \(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1\)

\(\Leftrightarrow3x^2+12x-9=3x^2+3x+1\Leftrightarrow x=\dfrac{10}{9}\)

e, \(\Leftrightarrow2x^2-x-3=2x^2+9x-5\Leftrightarrow x=5\)

f, \(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=10x-5x^2-11x-22\)

\(\Leftrightarrow-5x^2+2x-1=-5x^2-x-22\Leftrightarrow3x=-21\Leftrightarrow x=-7\)

1 tháng 2 2022

Cảm ơn bạn nhiều ạ 

 

22 tháng 3 2018

2x3 + 5x2 – 3x = 0

⇔ x(2x2 + 5x – 3) = 0

⇔ x.(2x2 + 6x – x – 3) = 0

⇔ x. [2x(x + 3) – (x + 3)] = 0

⇔ x.(2x – 1)(x + 3) = 0

⇔ x = 0 hoặc 2x – 1 = 0 hoặc x + 3 = 0

   + 2x – 1 = 0 ⇔ 2x = 1 ⇔ x = 1/2.

   + x + 3 = 0 ⇔ x = -3.

Vậy phương trình có tập nghiệm Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

a: 3x-4=0

=>3x=4

hay x=4/3

b: (x+2)(2x-3)=0

=>x+2=0 hoặc 2x-3=0

=>x=-2 hoặc x=3/2