Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\left(2x+5\right)\frac{6}{2}=75\\ \Leftrightarrow\left(2x+5\right)3=75\\ \Leftrightarrow6x+15=75\\\Leftrightarrow 6x=75-15\\\Leftrightarrow 6x=60\\ \Leftrightarrow x=10\)
\(b.\frac{x-3}{5}=6-\frac{1-2x}{3}\\ \Leftrightarrow\frac{3\left(x-3\right)}{15}=\frac{6.15}{15}-\frac{5\left(1-2x\right)}{15}\\ \Leftrightarrow3\left(x-3\right)=6.15-5\left(1-2x\right)\\ \Leftrightarrow3x-9=90-5+10x\\ \Leftrightarrow3x-9-90+5-10x=0\\ \Leftrightarrow-7x-94=0\\ \Leftrightarrow-7x=94\\ \Leftrightarrow x=\frac{-94}{7}\)
\(c.\frac{2x}{3}+\frac{2x-1}{6}=\frac{4-x}{3}\\ \Leftrightarrow\frac{2x.2}{6}+\frac{2x-1}{6}=\frac{2\left(4-x\right)}{6}\\ \Leftrightarrow2x.2+2x-1=2\left(4-x\right)\\ \Leftrightarrow4x+2x-1=8-2x\\ \Leftrightarrow4x+2x-1-8+2x=0\\ \Leftrightarrow8x-9=0\\ \Leftrightarrow8x=9\\ \Leftrightarrow x=\frac{9}{8}\)
\(d.\frac{x-1}{2}+\frac{x-1}{4}=\frac{1-x}{3}\\ \Leftrightarrow\frac{6\left(x-1\right)}{12}+\frac{3\left(x-1\right)}{12}=\frac{4\left(1-x\right)}{12}\\ \Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=4\left(1-x\right)\\ \Leftrightarrow6x-6+3x-3=4-4x\\ \Leftrightarrow6x-6+3x-3-4+4x=0\\ \Leftrightarrow13x-13=0\\ \Leftrightarrow13x=13\\ \Leftrightarrow x=1\)
a: =>10x-4=15-9x
=>19x=19
hay x=1
b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)
=>30x+9=36+32x+24
=>30x-32x=60-9
=>-2x=51
hay x=-51/2
c: \(\Leftrightarrow2x+\dfrac{6}{5}=5-\dfrac{13}{5}-x\)
=>3x=6/5
hay x=2/5
d: \(\Leftrightarrow\dfrac{7x}{8}-\dfrac{5\left(x-9\right)}{1}=\dfrac{20x+1.5}{6}\)
\(\Leftrightarrow21x-120\left(x-9\right)=4\left(20x+1.5\right)\)
=>21x-120x+1080=80x+60
=>-179x=-1020
hay x=1020/179
e: \(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
=>35x-5+60x=96-6x
=>95x+6x=96+5
=>x=1
f: \(\Leftrightarrow6\left(x+4\right)+30\left(-x+4\right)=10x-15\left(x-2\right)\)
=>6x+24-30x+120=10x-15x+30
=>-24x+96=-5x+30
=>-19x=-66
hay x=66/19
Ta có:
2(a − 1)x − a(x − 1) = 2a + 3
⇔(a − 2)x = a + 3 (3)
Do đó, khi a = 2, phương trình (2) tương đương với phương trình 0x = 5.
Phương trình này vô nghiệm nên phương trình (2) vô nghiệm.
Lần sau ghi đề nhớ ghi rõ, đọc đề bạn mình muốn khóc luôn.
\(b.\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\\\Leftrightarrow \frac{21x}{24}-\frac{120\left(x-9\right)}{24}=\frac{80x+6}{24}\\\Leftrightarrow 21x-120x+1080=80x+6\\ \Leftrightarrow-179x=-1074\\\Leftrightarrow x=6\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{6\right\}\)
\(a.2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\\ \Leftrightarrow\frac{10x}{5}+\frac{6}{5}=\frac{25}{5}-\frac{13+5x}{5}\\\Leftrightarrow 10x+6=25-13-5x\\\Leftrightarrow 15x=6\\ \Leftrightarrow x=\frac{2}{5}\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{\frac{2}{5}\right\}\)
a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)
Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)
\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)
Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)
\(\Leftrightarrow2x^2+2-2x^2-2x=0\)
\(\Leftrightarrow-2x+2=0\)
\(\Leftrightarrow-2x=-2\)
hay x=1(nhận)
Vậy: S={1}
b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)
Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)
\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)
\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)
\(\Leftrightarrow-56x-1=0\)
\(\Leftrightarrow-56x=1\)
hay \(x=-\dfrac{1}{56}\)(nhận)
Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)
c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)
Ta có: \(\dfrac{5}{3x+2}=2x-1\)
\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)
\(\Leftrightarrow6x^2-3x+4x-2-5=0\)
\(\Leftrightarrow6x^2+x-7=0\)
\(\Leftrightarrow6x^2-6x+7x-7=0\)
\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)
d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)
Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)
\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)
\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)
\(\dfrac{5\left(x-1\right)+2}{6}-\dfrac{7x-1}{4}=\dfrac{2\left(2x+1\right)}{7}-5\)
\(\Leftrightarrow\dfrac{5x-3}{6}-\dfrac{7x-1}{4}=\dfrac{4x+2}{7}-5\)
\(\Leftrightarrow\dfrac{14\left(5x-3\right)-21\left(7x-1\right)}{84}=\dfrac{12\left(4x+2\right)-420}{84}\)
\(\Leftrightarrow70x-42-147x+21=48x-396\)
\(\Leftrightarrow70x-147x-48x=-396+42-21\)
\(\Leftrightarrow-125x=-375\)
\(\Leftrightarrow x=3\)