\(5x^2-x+5=\sqrt{x^4+x^2+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2021

\(5x^2-x+5=\sqrt{x^4+x^2+1}\)

\(\Leftrightarrow5x^2-x+5=\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

Đặt \(a=\sqrt{x^2-x+1};b=\sqrt{x^2+x+1}\left(a;b>0\right)\)

Pt tt: \(3a^2+2b^2=ab\)

\(\Leftrightarrow3a^2-ab+2b^2=0\) 

\(\Leftrightarrow3\left(a-\dfrac{b}{6}\right)^2+\dfrac{23}{12}b^2=0\)(vô nghiệm)

Vậy pt vô nghiệm

cho mình hỏi, làm để nào để phân tích\(\sqrt{x^4+x^2+1}\) ra \(\sqrt{\left(x^2-x+1\right).\left(x^2+x+1\right)}\)  vậy? 

 

13 tháng 3 2021

a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)

\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)

13 tháng 3 2021

a') (tiếp)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)

Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)

Với mọi \(x\ge4\), ta có:

\(\sqrt{3x+1}>0\)\(\sqrt{x-4}\ge0\)

\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)

\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)

Do đó phương trình (1) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

18 tháng 10 2020

a) \(\sqrt{2x-1}=\sqrt{5}\)

ĐK : \(x\ge\frac{1}{2}\)

Bình phương hai vế

pt <=> \(2x-1=25\)

    <=> \(2x=26\)

    <=> \(x=13\left(tm\right)\)

Vậy S = { 13 }

b) \(\sqrt{4-5x}=12\)

ĐK : \(x\le\frac{4}{5}\)

Bình phương hai vế

pt <=> \(4-5x=144\)

    <=> \(-5x=140\)

    <=> \(x=-28\left(tm\right)\)

Vậy S = { -28 }

c) \(\sqrt{x^2+6x+9}=3x-1\)< chắc hẳn là như này :]> 

<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)

<=> \(\left|x+3\right|=3x-1\)

<=> \(\orbr{\begin{cases}x+3=3x-1\left(x\ge-3\right)\\-3-x=3x-1\left(x< -3\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\left(tm\right)\\x=-\frac{1}{2}\left(ktm\right)\end{cases}}\)

Vậy S = { 2 }

d) \(2\sqrt{x}\le\sqrt{10}\)

ĐK : \(x\ge0\)

Bình phương hai vế

bpt <=> \(4x\le10\)

      <=> \(x\le\frac{10}{4}\)

Kết hợp với ĐK => Nghiệm của bất phương trình là \(0\le x\le\frac{10}{4}\)

18 tháng 10 2020

a) \(ĐKXĐ:x\ge\frac{1}{2}\)

 \(\sqrt{2x-1}=\sqrt{5}\)\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x-1=5\)\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=3\)

b) \(ĐKXĐ:x\le\frac{4}{5}\)

\(\sqrt{4-5x}=12\)\(\Leftrightarrow4-5x=144\)( bình phương 2 vế )

\(\Leftrightarrow5x=-140\)\(\Leftrightarrow x=-28\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=-28\)

c) \(ĐKXĐ:x\ge\frac{1}{3}\)

\(\sqrt{x^2+6x+9}=3x-1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

+) TH1: Nếu \(x+3< 0\)\(\Leftrightarrow x< -3\)

thì \(\left|x+3\right|=-\left(x+3\right)=-x-3\)

\(\Rightarrow-x-3=3x-1\)\(\Leftrightarrow4x=-2\)

\(\Leftrightarrow x=\frac{-1}{2}\)(  không thỏa mãn ĐKXĐ )

+) TH2: \(x+3\ge0\)\(\Rightarrow x\ge-3\)

thì \(\left|x+3\right|=x+3\)

\(\Rightarrow x+3=3x-1\)\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=2\)

25 tháng 5 2019

1, \(x^2-5x+4-\sqrt{5-x}-\sqrt{x-2}=0\)ĐKXĐ \(2\le x\le5\)

ĐK dấu bằng xảy ra \(x^2-5x+4\ge0\)

Kết hơp với ĐKXĐ=> \(4\le x\le5\)

Khi đó Phương trình tương đương

\(x^2-7x+11+\left(x-4-\sqrt{5-x}\right)+\left(x-3-\sqrt{x-2}\right)=0\)

<=> \(x^2-7x+11+\frac{x^2-7x+11}{x-4+\sqrt{5-x}}+\frac{x^2-7x+11}{x-3+\sqrt{x-2}}=0\)

=> \(\orbr{\begin{cases}x^2-7x+11=0\\1+\frac{1}{x-4+\sqrt{5-x}}+\frac{1}{x-3+\sqrt{x-2}}=0\left(2\right)\end{cases}}\)

Phương trình (2) vô nghiệm với \(4\le x\le5\)=> VT>0

\(x^2-7x+11=0\)

Với \(4\le x\le5\)

\(S=\left\{\frac{7+\sqrt{5}}{2}\right\}\)

25 tháng 5 2019

2.\(\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\)ĐKXĐ \(-2\le x\le3\)

<=> \(3x^3+3x^2-12x-3=3\sqrt{x+2}+3\sqrt{3-x}\)

<=> \(3x^3+3x^2-12x-12+\left(x+4-3\sqrt{x+2}\right)+\left(5-x-3\sqrt{3-x}\right)=0\)

<=> \(3\left(x^2-x-2\right)\left(x+2\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}=0\)

=> \(\orbr{\begin{cases}x^2-x-2=0\\3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{x-3}}=0\left(2\right)\end{cases}}\)

Phương trình (2) vô nghiệm với\(-2\le x\le3\)=> VT>0

\(S=\left\{2;-1\right\}\)

21 tháng 9 2019

 ĐKXĐ:....

\(\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}\)

\(\Rightarrow4-\sqrt{1-x}=2-x\)

\(\Rightarrow\sqrt{1-x}=2+x\)

\(\Rightarrow1-x=4+4x+x^2\)

\(\Rightarrow1-x-4-4-x^2=0\)

\(\Rightarrow x^2+x+7=0\)

Đến đây dễ rồi làm nốt nha bạn !

27 tháng 9 2019

 ĐKXĐ:....

\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}4−1−x​​=2−x

\Rightarrow4-\sqrt{1-x}=2-x⇒4−1−x​=2−x

\Rightarrow\sqrt{1-x}=2+x⇒1−x​=2+x

\Rightarrow1-x=4+4x+x^2⇒1−x=4+4x+x2

\Rightarrow1-x-4-4-x^2=0⇒1−x−4−4−x2=0

\Rightarrow x^2+x+7=0⇒x2+x+7=0

Đến đây dễ rồi làm nốt nha bạn !

1 tháng 12 2018

a) ĐK:\(x\ge4\)

\(\sqrt{x-1}+\sqrt{x-4}=\sqrt{x+4}\Leftrightarrow x-1+x-4+2\sqrt{\left(x-1\right)\left(x-4\right)}=x+4\Leftrightarrow9-x=2\sqrt{x^2-5x+4}\left(ĐK:x\le9\right)\Leftrightarrow\left(9-x\right)^2=4\left(x^2-5x+4\right)\Leftrightarrow81-18x+x^2=4x^2-20x+16\Leftrightarrow3x^2-2x-65=0\Leftrightarrow3x^2-15x+13x-65=0\Leftrightarrow3x\left(x-5\right)+13\left(x-5\right)=0\Leftrightarrow\left(x-5\right)\left(3x+13\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\3x+13=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\left(tm\right)\\x=-\dfrac{13}{3}\left(ktm\right)\end{matrix}\right.\)

Vậy S={5}

b)\(\sqrt[3]{2x-1}+\sqrt[3]{x-1}=1\Leftrightarrow\sqrt[3]{2x-1}-1+\sqrt[3]{x-1}=0\Leftrightarrow\dfrac{2x-1-1}{\left(\sqrt[3]{2x-1}\right)^2+2.\sqrt[3]{2x-1}+1}+\dfrac{x-1}{\left(\sqrt[3]{x-1}\right)^2}=0\Leftrightarrow\left(x-1\right)\left[\dfrac{2}{\left(\sqrt[3]{2x-1}+2.\sqrt[3]{2x-1}+1\right)}+\dfrac{1}{\left(\sqrt[3]{x-1}\right)^2}\right]=0\)(1)

Dễ thấy \(\dfrac{2}{\left(\sqrt[3]{2x-1}+2.\sqrt[3]{2x-1}+1\right)}+\dfrac{1}{\left(\sqrt[3]{x-1}\right)^2}>0\)

Vậy (1)\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy S={1}

c) ĐK:\(\left[{}\begin{matrix}x\le-4\\x\ge-1\end{matrix}\right.\)

\(5\sqrt{x^2+5x+8}=x^2+5x+4\left(2\right)\)

Đặt a=x2+5x+4(a\(\ge0\))

(2)\(\Leftrightarrow5\sqrt{a+4}=a\Leftrightarrow25\left(a+4\right)=a^2\Leftrightarrow a^2-25a-100=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=\dfrac{25+5\sqrt{41}}{2}\left(tm\right)\\a=\dfrac{25-5\sqrt{41}}{2}\left(ktm\right)\end{matrix}\right.\)\(\Leftrightarrow a=\dfrac{25+5\sqrt{41}}{2}\Leftrightarrow\dfrac{25+5\sqrt{41}}{2}=x^2+5x+4\Leftrightarrow25+5\sqrt{41}=2x^2+10x+8\Leftrightarrow2x^2+10x-17-5\sqrt{41}=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=3,045972466\left(tm\right)\\x=-8,045972466\left(tm\right)\end{matrix}\right.\)

Vậy S={-8,045972466;3,045972466}

1 tháng 12 2018

c) ĐK:\(\left[{}\begin{matrix}x\le-4\\x\ge-1\end{matrix}\right.\)

\(5\sqrt{x^2+5x+28}=x^2+5x+4\left(1\right)\)

Đặt a=x2+5x+4(a\(\ge0\))

Vậy \(\left(1\right)\Leftrightarrow5\sqrt{a+24}=a\Leftrightarrow25\left(a+24\right)=a^2\Leftrightarrow a^2-25a-600=0\Leftrightarrow a^2-40a+15a-600=0\Leftrightarrow a\left(a-40\right)+15\left(a-40\right)=0\Leftrightarrow\left(a-40\right)\left(a+15\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a-40=0\\a+15=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}a=40\left(tm\right)\\a=-15\left(ktm\right)\end{matrix}\right.\)

Vậy ta có a=40\(\Leftrightarrow x^2+5x+4=40\Leftrightarrow x^2+5x-36=0\Leftrightarrow x^2-4x+9x-36=0\Leftrightarrow x\left(x-4\right)+9\left(x-4\right)=0\Leftrightarrow\left(x-4\right)\left(x+9\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-4=0\\x+9=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\left(tm\right)\\x=-9\left(tm\right)\end{matrix}\right.\)

Vậy S={-9;4}

17 tháng 8 2017

b,c đề ko ổn

17 tháng 8 2017

đm m lm lắm thế 

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)