Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)
\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)
\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)
\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)
\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)
\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)
\(\Rightarrow C=\sqrt{14}\)
\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)
\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)
Bài 2:
a) Bạn xem lại đề.
b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)
c)
\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)
\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
a: Đặt \(x^2-4=a\)
Pt sẽ là \(a=3\sqrt{xa}\)
\(\Rightarrow a^2=9xa\)
\(\Leftrightarrow a\left(a-9x\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-9x\right)=0\)
hay \(x\in\left\{2;-2;\dfrac{9+\sqrt{97}}{2};\dfrac{9-\sqrt{97}}{2}\right\}\)
d: Đặt \(\sqrt{x^2-x+1}=a;\sqrt{x^2+x+1}=b\)
Pt sẽ là 2a+b=ab+2
=>(b-2)(1-a)=0
=>b=2 và 1-a
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+1=4\\x^2-x+1=1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
(ĐK:\(1\le x\le2\))
Phương pháp giải những bài căn thức phức tạp như thế này thường là liên hợp và ở đây nghiệm đẹp đó là x=1 vì thế ta thực hiện liên hợp như sau:
\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}+2\left(x-1\right)+\sqrt{x+3}-2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}+2\left(x-1\right)+\frac{x-1}{\sqrt{x+3}+2}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(1+2\sqrt{x^2-3x+5}+2\sqrt{x-1}+\frac{1}{\sqrt{x+3}+2}\right)=0\)
Dễ dàng chứng minh giá trị trong ngoặc dương nên x=1
Vậy S={1}
\(\sqrt{x\left(x-2\right)}+\sqrt{x\left(x-5\right)}=\sqrt{x\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x-2}+\sqrt{x-5}-\sqrt{x+3}\right)=0\)
TH1: x = 0 (nhận)
TH2:
\(\sqrt{x-2}+\sqrt{x-5}-\sqrt{x+3}=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-2\right)+\left(\sqrt{x-5}-1\right)-\left(\sqrt{x+3}-3\right)=0\)
\(\Leftrightarrow\frac{x-2-4}{\sqrt{x-2}+2}+\frac{x-5-1}{\sqrt{x-5}+1}-\frac{x+3-9}{\sqrt{x+3}+3}=0\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2}+2}+\frac{1}{\sqrt{x-5}+1}-\frac{1}{\sqrt{x+3}+3}\right)\left(x-6\right)=0\)
Pt \(\frac{1}{\sqrt{x-2}+2}+\frac{1}{\sqrt{x-5}+1}-\frac{1}{\sqrt{x+3}+3}=0\) vô no
=> x - 6 = 0
<=> x = 6 (nhận)
cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~
Bài 1 :
a)\(\sqrt{-2\text{x}+3}\) <=> -2x+3 \(\ge\)0 <=> -2x \(\ge\) -3 <=> x\(\le\) \(\frac{3}{2}\)
b)\(\sqrt{\frac{4}{x+3}}< =>x+3>0< =>x>-3\)
Bài 2 :
a)\(\sqrt{\left(4+\sqrt{2}\right)^2}=\left|4+\sqrt{2}\right|=4+\sqrt{2}\)
b)\(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}=2\sqrt{3}+\left|2-\sqrt{3}\right|=2\sqrt{3}+2-\sqrt{3}=2+\sqrt{3}\)
c) \(\sqrt{\left(3-\sqrt{3}\right)^2}=\left|3-\sqrt{3}\right|=3-\sqrt{3}\)
Bài 3 :
a) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
VT = \(\sqrt{5-2.2.\sqrt{5}+2^2}-\sqrt{5}\)
=\(\sqrt{\left(\sqrt{5}\right)^2-4\sqrt{5}+2^2}-\sqrt{5}\)
=\(\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
=|\(\sqrt{5-2}\)| -\(\sqrt{5}\)
= \(\sqrt{5}-2-\sqrt{5}\)
= -2 = VP
b)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)
VT = \(\sqrt{7+2.4.\sqrt{7}+4^2}-\sqrt{7}\)
= \(\sqrt{\left(\sqrt{7}+4\right)^2}-\sqrt{7}\)
= |\(\sqrt{7}+4\)| -\(\sqrt{7}\)
=\(\sqrt{7}+4-\sqrt{7}\)
= 4 =VP
c) \(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
VT = \(16-8\sqrt{7}+7\)
= 23 - \(8\sqrt{7}\) = VP
Bài 4:
a)\(\frac{x^2-5}{x+\sqrt{5}}=\frac{x^2-\left(\sqrt{5}\right)^2}{x+\sqrt{5}}=\frac{\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
Tương tự
Bài 5 :
a) \(\sqrt{x^2+6\text{x}+9}=3\text{x}-1\)
=> \(\sqrt{\left(x+3^2\right)}\) = 3x-1
=> x+3 = 3x-1
+) x+3 =3x-1 => x= 2
+)x+3=-3x-1 => x= \(\frac{-1}{2}\) ( không tmđk)
b)+c) Tương tự
Câu 1 \(\left\{{}\begin{matrix}2x+2y+2xy=10\left(1\right)\\x^2+y^2=5\left(2\right)\end{matrix}\right.\)
=>2.(2) - (1)=\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)
<=>\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\) =>x=y=1
Câu 2 dùng vi-et đảo
Câu 3 rút x=y+1 từ pt trên rồi thế xuống dưới
Câu 4 lấy pt trên cộng pt dưới rồi xét dấu GTTĐ
Câu 3: đề là \(\sqrt{x+5}-\sqrt{x-2}\) hay \(\sqrt{x+5}-\sqrt{x+2}\)?
Câu 4:
ĐKXĐ: \(x\le9\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x-4}=a\\\sqrt{9-x}=b\end{matrix}\right.\) ta có hệ:
\(\left\{{}\begin{matrix}a-b=-1\\a^3+b^2=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=a+1\\a^3+b^2=5\end{matrix}\right.\)
\(\Rightarrow a^3+\left(a+1\right)^2=5\)
\(\Leftrightarrow a^3+a^2+2a-4=0\) \(\Rightarrow a=1\)
\(\Rightarrow\sqrt[3]{x-4}=1\Rightarrow x-4=1\Rightarrow x=5\)
5.
ĐKXĐ: \(x\ge-\frac{17}{16}\)
\(\Leftrightarrow8x^2-15x-23-\left(x+1\right)\sqrt{16x+17}=0\)
\(\Leftrightarrow\left(x+1\right)\left(8x-23\right)-\left(x+1\right)\sqrt{16x+17}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\8x-23=\sqrt{16x+17}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow16x+17-2\sqrt{16x+17}-63=0\)
Đặt \(\sqrt{16x+17}=t\ge0\)
\(\Rightarrow t^2-2t-63=0\Rightarrow\left[{}\begin{matrix}t=9\\t=-7\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{16x+17}=9\Leftrightarrow x=\frac{32}{3}\)
mình cần phần 3 4 5 nữa thui ạ