Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2x(x + 5) - (x - 3)2 = x2 + 6
<=> 2x2 + 10x - (x2 - 6x + 9) = x2 + 6
<=> 2x2 + 10x - x2 + 6x - 9 - x2 = 6
<=> 16x = 6 + 9
<=> 16x = 15
<=> x = 15/16
Vậy...
b, (4x + 7)(x - 5) - 3x2 = x(x - 1)
<=> 4x2 - 20x + 7x - 35 - 3x2 = x2 - x
<=> 4x2 - 20x + 7x - 3x2 - x2 + x = 35
<=> -12x = 35
<=> x = -35/12
Vậy...
b) \(\frac{10x+1}{7}=\frac{7x-2}{4}\)
<=> \(\frac{4\left(10x+1\right)}{28}=\frac{7\left(7x-2\right)}{28}\)
<=> 40x + 4 = 49x - 14
<=> 40x - 49x = -14 - 4
<=> -9x = -18
<=> x = 2
Vậy S = {2}
c) \(\frac{x-5}{5}-2=\frac{1+19x}{6}\)
<=> \(\frac{6\left(x-5\right)-60}{30}=\frac{5\left(1+19x\right)}{30}\)
<=> 6x - 30 - 60 = 5 + 95x
<=> 6x - 95x = 5 + 90
<=> -89x = 95
<=> x = -95/89
Vậy S = {-95/89}
\(3\left(x-2\right)+4=5x-2\left(x-1\right)\\ \Leftrightarrow3x-6+4=5x-2x+2\\ \Leftrightarrow0x=4\left(vôlý\right)\)
Vậy pt vô nghiệm
\(2\left(x-2\right)-3\left(1-2x\right)=5\\ \Leftrightarrow2x-4-3+6x=5\\ \Leftrightarrow8x=12\\ \Leftrightarrow x=\dfrac{3}{2}\)
b) \(\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\)
\(\Leftrightarrow\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-6\right)=1680\)
\(\Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+28+2\right)-1680=0\)
\(\Leftrightarrow\left(x^2-11x+28\right)^2+2\left(x^2-11x+28\right)+1-1681=0\)
\(\Leftrightarrow\left(x^2-11x+28+1\right)^2-41^2=0\)
\(\Leftrightarrow\left(x^2-11x+29-41\right)\left(x^2-11x+29+41\right)=0\)
\(\Leftrightarrow\left(x^2-11x-12\right)\left(x^2-11x+70\right)=0\)
Th1: \(x^2-11x-12=0\Leftrightarrow x^2+x-12x-12=0\Leftrightarrow\left(x-12\right)\left(x+1\right)=0\)
\(\Leftrightarrow x-12=0\Leftrightarrow x=12\) hoặc \(x+1=0\Leftrightarrow x=-1\)
Th2:\(x^2-11x+70=0\Leftrightarrow x^2-2.x.\frac{11}{2}+\left(\frac{11}{2}\right)^2+\frac{159}{4}=0\Leftrightarrow\left(x-\frac{11}{2}\right)^2+\frac{159}{4}=0\)
Vì\(\left(x-\frac{11}{2}\right)^2\ge0\Rightarrow\left(x+\frac{11}{2}\right)^2+\frac{159}{4}\ge\frac{159}{4}\)
Mà ta có \(\left(x+\frac{11}{2}\right)^2+\frac{159}{4}=0\) Nên k có giá trị của x
Vậy tập nghiệm của phương trình là \(S=\left\{12;-1\right\}\)
a) x=-3,
x=2;
x = -(căn bậc hai(3)*căn bậc hai(5)*i+1)/2;
x = (căn bậc hai(3)*căn bậc hai(5)*i-1)/2;