\(\dfrac{11x^2-5x+6}{x^2+5x+6}=x\)

2)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

1,\(pt\Leftrightarrow11x^2-5x+6=x^3+5x^2+6x\)

\(\Leftrightarrow x^3-6x^2+11x-6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)(tm)

24 tháng 6 2019

2,\(pt\Leftrightarrow\frac{1}{x+1}+\frac{2}{x^2-x+1}=\frac{2x+3}{x^3+1}\)

\(\Leftrightarrow\frac{x^2-x+1+2x+2}{x^3+1}=\frac{2x+3}{x^3+1}\)

\(\Rightarrow x^2-x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)

=>(2x-1)(x-2)(x+1)<>0

hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)

b: ĐKXĐ: x+5<>0

=>x<>-5

c: ĐKXĐ: x4-1<>0

hay \(x\notin\left\{1;-1\right\}\)

d: ĐKXĐ: \(x^4+2x^2-3< >0\)

=>\(x\notin\left\{1;-1\right\}\)

22 tháng 12 2018

vui giúp mình với nha mọi người

28 tháng 12 2018

Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:

\(-3=4a+b\)

Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:

\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)

Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)

b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:

\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)

Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé

Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R

\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)

Chọn các điểm:

x 1 3 -1 2 -2

y 4 0 0 3 -5

14 tháng 3 2018

a,\(\dfrac{5x-2}{2-2x}+\dfrac{2x-1}{2}=1-\dfrac{x^2-x-3}{1-x}\)

<=>\(\dfrac{5x-2}{2\left(1-x\right)}+\dfrac{2x-1}{2}=1-\dfrac{x^2-x-3}{1-x}\)

<=>\(\dfrac{5x-2}{2\left(1-x\right)}+\dfrac{\left(2x-1\right)\left(1-x\right)}{2\left(1-x\right)}=\dfrac{2\left(1-x\right)}{2\left(1-x\right)}-\dfrac{2\left(x^2-x-3\right)}{2\left(1-x\right)}\)

=>\(5x-2+2x-2x^2-1+x=2-2x-2x^2+2x+6\)

<=>\(-2x^2+8x-3=-2x^2+8\)

<=>\(8x=11< =>x=\dfrac{11}{8}\)

vậy..........

b,\(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-1\right)+1}{\left(x-2\right)\left(x+2\right)}\)

<=>\(\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(3x-1\right)+1}{\left(x-2\right)\left(x+2\right)}\)

=>\(x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-x+1\)

<=>\(3x^2-25x-6=3x^2-x+1\)

<=>\(-24x=7< =>x=\dfrac{-7}{24}\)

vậy..................

câu c tương tự nhé :)

3 tháng 12 2018

mng giúp e với ạ !

3 tháng 12 2018

b)\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\\sqrt{x^2-3x+8}=x-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-3x+8=\left(x-4\right)^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-3x+8=x^2-8x+16\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\5x=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x=\dfrac{8}{5}\left(loại\right)\end{matrix}\right.\)=> pt vô nghiệm

c)\(\left\{{}\begin{matrix}8-x\ge0\\x^2-5x-2=\left(8-x\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x^2-5x-2=x^2-16x+64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\11x=66\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=6\left(nhận\right)\end{matrix}\right.\)

8 tháng 2 2019

$a)\frac{2x}{2x^{2}-5x+3}+\frac{13x}{2x^{2}+x+3}=6$ (1)

Nhận thấy x=0 ko phải nghiệm của phương trình

Chia cả tử và mẫu của mỗi phân thức cho x, ta được:

$\frac{2}{2x-5+\frac{3}{x}}+\frac{13}{2x+1+\frac{3}{x}}=6$

Đặt $2x+\frac{3}{x}$=t

=> (1) <=> $\frac{2}{t-5}+\frac{13}{t+1}=6$

<=> $2t^{2}-13t+11=0$

Có a+b+c=2-13+11=0

=> $t_{1}=1$

$t_{2}=\frac{c}{a}=\frac{11}{2}$

* t = 1

=> $2x+\frac{3}{x}=1$

<=> $2x^{2}-x+3=0$ (vô nghiệm)

* t = $\frac{11}{2}$

=> $2x+\frac{3}{x}=\frac{11}{2}$

<=> $4x^{2}-11x+6=0$

=> $x_{1}=\frac{3}{4}$

$x_{2}=2$

Vậy phương trình có tập nghiệm S={$\frac{3}{4};2$}

9 tháng 2 2019

b, \(x^2+\left(\dfrac{x}{x-1}\right)^2=1\)

\(\Leftrightarrow\left[x^2+\left(\dfrac{x}{x-1}\right)^2+2.x.\dfrac{x}{x-1}\right]-2.\dfrac{x^2}{x-1}-1=0\)

\(\Leftrightarrow\left(x+\dfrac{x}{x-1}\right)^2-2.\dfrac{x^2}{x-1}-1=0\)

\(\Leftrightarrow\left(\dfrac{x\left(x-1\right)+x}{x-1}\right)^2-2.\dfrac{x^2}{x-1}-1=0\)

\(\Leftrightarrow\left(\dfrac{x^2}{x-1}\right)^2-2.\dfrac{x^2}{x-1}-1=0\) (1)

Đặt : \(\dfrac{x^2}{x-1}=t\) (*) thì phương trình (1) trở thành:

\(t^2-2t-1=0\)

Ta có: \(\Delta=8>0\)

\(\Rightarrow t_1=\dfrac{2-\sqrt{8}}{2}=\dfrac{2-2\sqrt{2}}{2}=1-\sqrt{2}\)

\(t_2=\dfrac{2+\sqrt{8}}{2}=\dfrac{2+2\sqrt{2}}{2}=1+\sqrt{2}\)

Thay vào (*) rồi tìm x là xong

=.= hk tốt!!

2 tháng 4 2017

a) \(x+1+\dfrac{2}{x+3}=\dfrac{x+5}{x+3}\)

\(\Leftrightarrow x+\dfrac{x+5}{x+3}=\dfrac{x+5}{x+3}\)

\(\Leftrightarrow x=0\)

b) \(2x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+\dfrac{x\left(x-1\right)+3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}-x\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x\left(x-1\right)}{x-1}\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x^2+x}{x-1}\)

\(\Leftrightarrow x^2-x+3=3x-x^2+x\) ( điều kiện \(x\ne1\) )

\(\Leftrightarrow2x^2-5x+3=0\)

\(\Delta=b^2-4ac\)

\(\Delta=1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3}{2}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=1\left(loại\right)\end{matrix}\right.\)

Vậy \(x=\dfrac{3}{2}\)

c) \(\dfrac{x^2-4x-2}{\sqrt{x-2}}=\sqrt{x-2}\)

\(\Leftrightarrow x^2-4x-2=\sqrt{\left(x-2\right)^2}\) ( điều kiện \(x>2\) )

\(\Leftrightarrow x^2-4x-2=x-2\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=5\end{matrix}\right.\)

Vậy \(x=5\)

d) \(\dfrac{2x^2-x-3}{\sqrt{2x-3}}=\sqrt{2x-3}\)

\(\Leftrightarrow2x^2-x-3=\sqrt{\left(2x-3\right)^2}\) ( điều kiện \(x>\dfrac{3}{2}\) )

\(\Leftrightarrow2x^2-x-3=2x-3\)

\(\Leftrightarrow2x^2-3x=0\)

\(\Leftrightarrow x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\)

Vậy phương trình vô nghiệm

2 tháng 4 2017

\(a,\Leftrightarrow\dfrac{\left(3x+4\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{4+3x^2-12}{\left(x-2\right)\left(x+2\right)}\)

ĐKXĐ:\(x\ne2;x\ne-2\)

\(\Rightarrow3x^2+10x+8-x+2-4-3x^2+12=0\)

\(\Leftrightarrow\)\(9x+18=0\)

\(\Leftrightarrow x=-2\)(loại).
Vậy phương trình vô nghiệm.

b,ĐKXĐ:\(x\ne\dfrac{1}{2}\)

PT đã cho \(\Rightarrow6x^2-4x+6-6x^2+13x-5=0\)

\(\Leftrightarrow9x+1=0\)

\(\Leftrightarrow x=-\dfrac{1}{9}\left(tmđk\right)\)

c,\(ĐKXĐ:x\ge2\)

Bình phương 2 vế ta được:

\(x^2-4-x^2+2x-1=0\)

\(\Leftrightarrow2x-5=0\)

\(\Leftrightarrow x=\dfrac{5}{2}\left(tmđk\right)\)

a: A(x)=0

=>2x-6=0

hay x=3

b: B(x)=0

=>3x-6=0

hay x=2

c: M(x)=0

\(\Rightarrow x^2-3x+2=0\)

=>x=2 hoặc x=1

d: P(x)=0

=>(x+6)(x-1)=0

=>x=-6 hoặc x=1

e: Q(x)=0

=>x(x+1)=0

=>x=0 hoặc x=-1

15 tháng 4 2017

a) ĐKXĐ: 2x + 3 ≥ 0. Bình phương hai vế thì được:

(3x – 2)2 = (2x + 3)2 => (3x - 2)2 – (2x + 3)2 = 0

⇔ (3x -2 + 2x + 3)(3x – 2 – 2x – 3) = 0

=> x1 = (nhận), x2 = 5 (nhận)

Tập nghiệm S = {; 5}.

b) Bình phương hai vế:

(2x – 1)2 = (5x + 2)2 => (2x - 1 + 5x + 2)(2x – 1 – 5x – 2) = 0

=> x1 = , x2 = -1.

c) ĐKXĐ: x ≠ , x ≠ -1. Quy đồng rồi khử mẫu thức chung

(x – 1)|x + 1| = (2x – 3)(-3x + 1)

  • Với x ≥ -1 ta được: x2 – 1 = -6x2 + 11x – 3 => x1 = ;
    x2 = .
  • Với x < -1 ta được: -x2 + 1 = -6x2 + 11x – 3 => x1 = (loại vì không thỏa mãn đk x < -1); x2 = (loại vì x > -1)

Kết luận: Tập nghiệm S = {; }

d) ĐKXĐ: x2 +5x +1 > 0

  • Với x ≥ ta được: 2x + 5 = x2 + 5x + 1
    => x1 = -4 (loại); x2 = 1 (nhận)
  • Với x < ta được: -2x – 5 = x2 + 5x + 1

=> x1 =-6 (nhận); x2 = -1 (loại).

Kết luận: Tập nghiệm S = {1; -6}.