\(\left(x+2\right)^4-x^4=y^3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

a)\(3^x-y^3=1\)

  • Nếu x<0 suy ra y không nguyên
  • Nếu x=0 => y=0
  • Nếu x=1 =>y không nguyên
  • Nếu x=2 =>y=2
  • Nếu x>2 \(pt\Rightarrow3^x=y^3+1\left(x>2\right)\Rightarrow y^3>9\)

Ta suy ra \(y^3+1⋮9\Rightarrow y^3:9\) dư -1

\(\Rightarrow y=9k+2\) hoặc \(y=9k+5\) hoặc \(y=9k+8\) (k nguyên dương) (1)

Mặt khác ta cũng có \(y^3+1⋮3\) nên \(y=3m+2\) (m nguyên dương)

Từ (1) và (2) suy ra vô nghiệm

Vậy pt có 2 nghiệm nguyên là (0;0) và (2;2)

b)Xét .... ta dc x=y=0 hoặc x=1 và y=2

c)Xét.... x=y=0 hoặc x=0 và y=-1 hoặc x=-1 và y=0 hoặc x=y=-1

6 tháng 11 2019

a. \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)

<=> \(x^3+x^2+x+1=4y^2+4y+1\)

<=> \(\left(x+1\right)\left(x^2+1\right)=\left(2y+1\right)^2\)là một số chính phương lẻ

=> \(x+1;x^2+1\) là 2 số lẻ (1)

Chứng minh: \(\left(x+1;x^2+1\right)=1\)

Đặt: \(\left(x+1;x^2+1\right)=d\)

=> \(\hept{\begin{cases}x-1⋮d\\x^2+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}x^2-1⋮d\\x^2+1⋮d\end{cases}}}\)

=> \(\left(x^2+1\right)-\left(x^2-1\right)⋮d\)

=> \(2⋮d\)(2)

Từ (1) => d lẻ ( 3)

(2); (3) => d =1

Vậy  \(\left(x+1;x^2+1\right)=1\)

Có  \(\left(x+1\right)\left(x^2+1\right)\) là số chính phương

Từ  2 điều trên => \(\left(x+1\right),\left(x^2+1\right)\) là 2 số chính phương

Mặt khác \(x^2\) là số chính phương

Do đó: x = 0

Khi đó: \(4y\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)

Vậy phương trình có nghiệm ( x; y) là ( 0; 0) hoặc (0; -1)

18 tháng 1 2017

Dịt cụ mày

18 tháng 1 2017

mày bị ngáo ak. đã xấu còn bị điên. đã bị điên cò học dốt

1 tháng 4 2016

Tương đương 4y^2=4x^4+4x^2+4

⇔(2y)^2=(2x^2+1)^2+3⇒(2y−2x^2−1)(2y+2x^2+1)=3

..............................................

21 tháng 8 2019

\(\Leftrightarrow x^2+y^2+1+2x+2y+2xy=3\left(x^2+y^2+1\right)\)

\(\Leftrightarrow2x^2+2y^2+2-2x-2y-2xy=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(x^2+y^2-2xy\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow x=y=1\)