\(2^3+3=y^2\)

b) \...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 10 2019

a/ Bạn nhầm đề

b/ \(\Leftrightarrow\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)

Với \(x=0;1\) không thỏa mãn

Nếu \(x=2\) ta thấy thỏa mãn

Nếu \(x>2\) do \(\left\{{}\begin{matrix}\frac{3}{5}< 1\\\frac{4}{5}< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(\frac{3}{5}\right)^x< \left(\frac{3}{5}\right)^2\\\left(\frac{4}{5}\right)^x< \left(\frac{4}{5}\right)^2\end{matrix}\right.\)

\(\Rightarrow\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x< \left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1=VP\)

\(\Rightarrow\) Phương trình vô nghiệm

Vậy pt có nghiệm duy nhất \(x=2\)

c/ \(4x^2+4x+1+y^2-6y+9=74\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=74=7^2+5^2\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=7^2\\\left(y-3\right)^2=5^2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}\left(2x+1\right)^2=5^2\\\left(y-3\right)^2=7^2\end{matrix}\right.\)

8 tháng 10 2019

từ nay sẽ gọi cậu là đại ca, mơn đại ca~~yeu

4 tháng 1 2017

a)\(3^x-y^3=1\)

  • Nếu x<0 suy ra y không nguyên
  • Nếu x=0 => y=0
  • Nếu x=1 =>y không nguyên
  • Nếu x=2 =>y=2
  • Nếu x>2 \(pt\Rightarrow3^x=y^3+1\left(x>2\right)\Rightarrow y^3>9\)

Ta suy ra \(y^3+1⋮9\Rightarrow y^3:9\) dư -1

\(\Rightarrow y=9k+2\) hoặc \(y=9k+5\) hoặc \(y=9k+8\) (k nguyên dương) (1)

Mặt khác ta cũng có \(y^3+1⋮3\) nên \(y=3m+2\) (m nguyên dương)

Từ (1) và (2) suy ra vô nghiệm

Vậy pt có 2 nghiệm nguyên là (0;0) và (2;2)

b)Xét .... ta dc x=y=0 hoặc x=1 và y=2

c)Xét.... x=y=0 hoặc x=0 và y=-1 hoặc x=-1 và y=0 hoặc x=y=-1

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Câu a:

Ta có:

\((x-3)^2+x^4=-y^2+6y-4\)

\(\Leftrightarrow (x-3)^2+x^4+y^2-6y+4=0\)

\(\Leftrightarrow x^4+x^2-6x+9+y^2-6y+4=0\)

\(\Leftrightarrow x^4+x^2-6x+4+(y^2-6y+9)=0\)

\(\Leftrightarrow (x^4-2x^2+1)+3(x^2-2x+1)+(y^2-6y+9)=0\)

\(\Leftrightarrow (x^2-1)^2+3(x-1)^2+(y-3)^2=0\)

\(\Rightarrow (x^2-1)^2=(x-1)^2=(y-3)^2=0\)

\(\Rightarrow \left\{\begin{matrix} x=1\\ y=3\end{matrix}\right.\)

Vậy..........

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Câu b:

ĐKXĐ: \(\frac{3}{2}\leq x\leq \frac{5}{2}\)

\(\sqrt{2x-3}+\sqrt{5-2x}-x^2+4x-6=0\)

\(\Leftrightarrow \sqrt{2x-3}+\sqrt{5-2x}=x^2-4x+6\)

Áp dụng BĐT Bunhiacopxky:

\(\text{VT}^2\leq (1+1)(2x-3+5-2x)=4\)

\(\Rightarrow \text{VT}\leq 2\)

\(\text{VP}=x^2-4x+6=(x-2)^2+2\geq 2\)

Do đó để \(\text{VT}=\text{VP}\) thì \(\text{VT}=2=\text{VP}\)

Điều này xảy ra khi \(\left\{\begin{matrix} \sqrt{2x-3}=\sqrt{5-2x}\\ (x-2)^2=0\end{matrix}\right.\Rightarrow x=2\) (t/m)

Vậy pt có nghiệm duy nhất $x=2$

Giải các hệ phương trình sau bằng phương pháp thế:a) \(\hept{\begin{cases}x-y=3\\3x-4y=2\end{cases}}\)b) \(\hept{\begin{cases}7x-3y=5\\4x+y=2\end{cases}}\)b) \(\hept{\begin{cases}x+3y=-2\\5x-4y=11\end{cases}}\)Bài giảia) Từ phương trình \(x-y=3\Rightarrow x=3+y\)Thay \(x=3+y\)vào phương trình \(3x-4y=2\)ta được:  \(3\left(3+y\right)-4y=2\Leftrightarrow9+3y-4y=2\)                                       ...
Đọc tiếp

Giải các hệ phương trình sau bằng phương pháp thế:

a) \(\hept{\begin{cases}x-y=3\\3x-4y=2\end{cases}}\)

b) \(\hept{\begin{cases}7x-3y=5\\4x+y=2\end{cases}}\)

b) \(\hept{\begin{cases}x+3y=-2\\5x-4y=11\end{cases}}\)

Bài giải

a) Từ phương trình \(x-y=3\Rightarrow x=3+y\)

Thay \(x=3+y\)vào phương trình \(3x-4y=2\)ta được: 

 

\(3\left(3+y\right)-4y=2\Leftrightarrow9+3y-4y=2\)

                                          \(\Leftrightarrow-y=-7\Leftrightarrow y=7\)

Thay \(y=7\) vào \(x=3\) ta được: 

\(x=3+7=10\)

Vậy: Hệ phương trình có nghiệm: \(\left(10;7\right)\)

b) Từ phương trình \(4x+y=2\Rightarrow y=2-4x\)

Thay \(y=2-4x\)vào phương trình \(7x-3y=5\)ta được:

\(7x-3\left(2-4x\right)=5\Leftrightarrow7x-6+12x=5\)

                                             \(\Leftrightarrow19x=11\Leftrightarrow x=\frac{11}{19}\)

Thay \(x=\frac{11}{19}\)vào \(y=2-4x\)ta được \(y=2-4.\frac{11}{19}=2-\frac{44}{19}=-\frac{6}{19}\)

Vậy: Hệ phương trình có nghiệm \(\left(\frac{11}{19};-\frac{6}{11}\right)\)

c) Từ phương trình \(x+3y=-2\Rightarrow x=-2-3y\)

Thay \(x=-2-3x\)vào phương trình \(5x-4y=11\)ta được

\(5\left(-2-3y\right)-4y=11\Leftrightarrow-10-15y-4y=11\)

                                                    \(\Leftrightarrow-19=21\Leftrightarrow y=-\frac{21}{19}\)

Thay \(y=-\frac{21}{19}\)vào \(x=-2-3y\)ta được \(x=-2-3\left(-\frac{21}{19}\right)=-2+\frac{69}{19}=\frac{25}{19}\)

Vậy: Hệ phương trình có nghiệm: \(\left(\frac{25}{19};-\frac{21}{19}\right)\)

1
21 tháng 1 2018

-guể viết lại làm gì man?

11 tháng 10 2017

1/ Ta có: \(x^2-2x-1=\left(\sqrt{2}+1\right)^2-2\left(\sqrt{2}+1\right)-1=0\)

\(\Rightarrow P=\left(x^4-4x^3+4x^2-2\right)^5+\left(x^3-3x^2-x-1\right)^6\)

\(=\left[\left(x^4-2x^3-x^2\right)+\left(-2x^3+4x^2+2x\right)+\left(x^2-2x-1\right)-1\right]^5+\left[\left(x^3-2x^2-x\right)+\left(-x^2+2x+1\right)-2x-2\right]^6\)

\(=\left(-1\right)^5+\left(-2x-2\right)^6\)

Xong

11 tháng 10 2017

5) Lợi dụng AM-GM :v

\(a^4+a^4+a^4+b^4\ge4a^3b\)

\(b^4+b^4+b^4+a^4\ge4b^3a\)

\(\Rightarrow2a^4+2b^4\ge a^4+a^4+ab^3+a^3b=\left(a^3+b^3\right)\left(a+b\right)\)

\(\Rightarrow P\ge\dfrac{a+b}{2ab}+\dfrac{b+c}{2bc}+\dfrac{c+a}{2ac}=\dfrac{\left(a+b\right)c}{2abc}+\dfrac{\left(b+c\right)a}{2abc}+\dfrac{\left(c+a\right)b}{2abc}=\dfrac{2\left(ab+bc+ca\right)}{2abc}=1\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=3\)

5 tháng 1 2019

Hỏi đáp ToánCòn lại tương tự

6 tháng 1 2019

có mấy bài sau k

cho mình xinn