\(5x+25=-3xy+8y^2\) 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

Phương trình \(5x+25=-3xy+8y^2\Leftrightarrow x=\frac{8y^2-25}{3y+5}\)

Bời vì x,y là số nguyên \(\Rightarrow8y^2-25⋮3y+5\)

\(\Rightarrow3\left(8y^2-25\right)⋮\left(3y+5\right)\Rightarrow\left(24y^2-75\right)⋮\left(3y+5\right)\left(1\right)\)

Mặt khác ta có \(8y\left(3y+5\right)⋮\left(3y+5\right)\Rightarrow\left(24y^2+40y\right)⋮\left(3y+5\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left[\left(24y^2+40y\right)-\left(24y^2-75\right)\right]⋮\left(3y+5\right)\)

Do đó \(\left(40y+75\right)⋮\left(3y+5\right)\Rightarrow3\left(40y+75\right)⋮\left(3y+5\right)\)

\(\Rightarrow\left(120y+225\right)⋮\left(3y+5\right)\)mà \(40\left(3y+5\right)⋮\left(3y+5\right)\)

\(\Rightarrow\left(120y+200\right)⋮\left(3y+5\right)\Rightarrow\left(120y+225\right)-\left(120y+200\right)=25⋮\left(3y+5\right)\)

\(\Rightarrow3y+5\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)

\(\Rightarrow y\in\left\{-2;0;-10\right\}\)

Với y=-2 => x=-7 ta có cặp (-7;-2) thỏa mãn

Với y=0 => x=-5 ta có cặp (-5;0) thỏa mãn

Với y=-10 => x=-3 ta có cặp (-3;-10) thỏa mãn

Phương trình có các cặp nghiệm nguyên \(\left(x;y\right)=\left\{\left(-7;-2\right);\left(-5;0\right);\left(-3;-10\right)\right\}\)

20 tháng 8 2020
E7euueueru3
22 tháng 9 2020

Đặt \(\sqrt{4x^2+5x-1}=a;2\sqrt{x^2-x-1}=b\left(a\ge0,b\ge0\right)\Rightarrow a^2-b^2=9x+3\)

Ta thụ được hệ phương trình: \(\hept{\begin{cases}a^2-b^2=9x+3\\a-b=9x+3\end{cases}\Rightarrow a^2-b^2=a-b\Leftrightarrow\left(a-b\right)\left(a+b-1\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\a+b=1\end{cases}}}\)

Xét 2 trường hợp xảy ra:

TH1: \(a=b\Leftrightarrow9x+3=0\Leftrightarrow x=\frac{-1}{3}\left(lo\text{ại}\right)\)

TH2: Kết hợp \(\hept{\begin{cases}a+b=1\\a-b=9x+3\end{cases}\Rightarrow2a=9x+4\Leftrightarrow\hept{\begin{cases}x\ge\frac{-4}{9}\\4\left(4x^2+5x-1\right)=81x^2+72x+16\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-4}{9}\\65x^2+52x+20=0\end{cases}}\)(*)

Hệ điều kiện (*) vô nghiệ do phương trình \(65x^2+52x+20=0\)vô nghiệm

Vậy hệ phương trình đã cho vô nghiệm.

22 tháng 9 2020

đk: \(\orbr{\begin{cases}x\ge\frac{1+\sqrt{5}}{2}\\x\le\frac{-5-\sqrt{41}}{8}\end{cases}}\)

Đặt \(\hept{\begin{cases}\sqrt{4x^2+5x-1}=a\\\sqrt{x^2-x-1}=b\end{cases}}\Leftrightarrow\hept{\begin{cases}4x^2+5x-1=a^2\\4\left(x^2-x-1\right)=4b^2\end{cases}}\)

\(\Rightarrow a^2-4b^2=9x+3\)

Mà \(a-2b=9x+3\)

=> \(a^2-4b^2=a-2b\)

<=> \(\left(a-2b\right)\left(a+2b\right)-\left(a-2b\right)=0\)

<=> \(\left(a-2b\right)\left(a+2b-1\right)=0\)

<=> \(\orbr{\begin{cases}a-2b=0\\a+2b-1=0\end{cases}}\)

Nếu: \(a-2b=0\)

\(\Leftrightarrow9x+3=0\)

\(\Leftrightarrow9x=-3\)

\(\Rightarrow x=-\frac{1}{3}\left(tm\right)\)

Nếu: \(a+2b-1=0\)

\(\Rightarrow a+2b=1\) , mà \(a-2b=9x+3\)

=> \(2a=9x+4\)

<=> \(2\sqrt{4x^2+5x-1}=9x+4\)

<=> \(4\left(4x^2+5x-1\right)=81x^2+72x+16\)

<=> \(65x^2+52x+20=0\)

<=> \(65\left(x^2+\frac{4}{5}x+\frac{4}{25}\right)+\frac{48}{5}=0\)

\(\Leftrightarrow65\left(x+\frac{2}{5}\right)^2=-\frac{48}{5}\) (vô lý)

Vậy \(x=-\frac{1}{3}\)

Theo quan điểm cá nhân là vậy._.

16 tháng 10 2020

30. \(\tan x+\cot x=2\sin\left(x+\frac{\pi}{4}\right)\)

ĐK: \(x\ne\frac{k\pi}{2}\)

pt <=> \(\frac{1}{\sin x.\cos x}=2\sin\left(x+\frac{\pi}{4}\right)\)

<=> \(\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)\)

Đánh giá: \(-1\le\sin2x\le1\)

=> \(\orbr{\begin{cases}\frac{1}{\sin2x}\le-1\\\frac{1}{\sin2x}\ge1\end{cases}}\)

\(-1\le\sin\left(x+\frac{\pi}{4}\right)\le1\)

Như vậy dấu "=" xảy ra <=> \(\orbr{\begin{cases}\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)=-1\\\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}\)

<=> \(\orbr{\begin{cases}\sin2x=\sin\left(x+\frac{\pi}{4}\right)=-1\\\sin2x=\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}\)

TH1: \(\sin2x=\sin\left(x+\frac{\pi}{4}\right)=-1\)

<=> \(\hept{\begin{cases}2x=-\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{4}=-\frac{\pi}{2}+k2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{\pi}{4}+k\pi\\x=-\frac{3\pi}{4}+k2\pi\end{cases}}\)loại

TH2: 

 \(\sin2x=\sin\left(x+\frac{\pi}{4}\right)=1\)

<=> \(\hept{\begin{cases}2x=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{4}+k2\pi\end{cases}}\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)

Vậy ...

16 tháng 10 2020

29) \(\sin x-2\sin2x-\sin3x=2\sqrt{2}\)

<=> \(\left(\sin x-\sin3x\right)-2\sin2x=2\sqrt{2}\)

<=> \(-2.\sin x\cos2x-2\sin2x=2\sqrt{2}\)

<=> \(\sin x\cos2x+\sin2x=-\sqrt{2}\)

Ta có: \(\left(\sin x\cos2x+\sin2x\right)^2\le\left(\sin^2x+1\right)\left(\sin^22x+\cos^22x\right)=\sin^2x+1\le2\)

( theo bunhia)

=> \(-\sqrt{2}\le\sin x\cos2x+\sin2x\le\sqrt{2}\)

Dấu "=" xảy ra <=> \(\frac{\sin x}{1}=\frac{\cos2x}{\sin2x}\)(1) và \(\sin x\cos2x+\sin2x=-\sqrt{2}\)(2)

(1) <=> \(\frac{\sin x.\cos2x}{1}=\frac{\cos^22x}{\sin2x}\)=> (2) <=>  \(\frac{\cos^22x}{\sin2x}+\sin2x=-\sqrt{2}\)

<=> \(\frac{1}{\sin2x}=-\sqrt{2}\)<=> \(\sin2x=-\frac{\sqrt{2}}{2}\)<=> \(\orbr{\begin{cases}x=-\frac{\pi}{8}+k\pi\\x=-\frac{3\pi}{8}+k\pi\end{cases}}\)

(1) <=> \(\sin x.\sin2x=\cos2x\)=> (2) <=> \(\sin x.\sin x.\sin2x+\sin2x=-\sqrt{2}\)

<=> \(\frac{\sin^2x}{2}+\frac{1}{2}=+1\Leftrightarrow\sin^2x=1\)=> \(\cos^2x=0\)loại vì \(\sin2x=-\frac{\sqrt{2}}{2}\)

Vậy pt vô nghiệm

1 tháng 8 2020

b) \(\hept{\begin{cases}xy+x+1=7y\left(1\right)\\x^2y^2+xy+1=13y^2=1\left(2\right)\end{cases}}\)

từ (2) ta có y khác 0 do đó

hệ trở thành \(\hept{\begin{cases}x+\frac{x}{y}+\frac{1}{y}=7\\x^2+\frac{x}{y}+\frac{1}{y^2}=13\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{y}\right)+\frac{x}{y}=7\\\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=13\end{cases}}}\)

đặt a=\(x+\frac{1}{y};b=\frac{x}{y}\)

hệ viết được dưới dạng \(\hept{\begin{cases}a+b=7\\a^2-b=13\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=17\\a^2+a-20=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-5\\b=12\end{cases}}}\)hay \(\hept{\begin{cases}a=4\\b=3\end{cases}}\)

với a=-5; b=12 ta được \(\hept{\begin{cases}x+\frac{1}{y}=5\\x\cdot\frac{1}{y}=12\end{cases}}\)

(x,\(\frac{1}{y}\)là nghiệm phương trình t2+5t+12=0, vô nghiệm)

với a=4, b=3 ta được \(\hept{\begin{cases}x+\frac{1}{y}=4\\x\cdot\frac{1}{y}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)hoặc \(\hept{\begin{cases}x=1\\y=\frac{1}{3}\end{cases}}\)

vậy hệ đã cho 2 nghiệm (x;y)=(3;1);(\(\left(1;\frac{1}{3}\right)\)

1 tháng 8 2020

a) điều kiện x\(\ne\)1 phương trình đã cho

\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^3-3\frac{x^2}{x-1}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}-1=-8\)

\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^3+\frac{3x^2}{x-1}-1=\left(-2\right)^3\)

\(\Leftrightarrow\left(\frac{x^2}{x-1}-1\right)^3=\left(-2\right)^3\Leftrightarrow\frac{x^2}{x-1}=-2\)

\(\Leftrightarrow\frac{x^2}{x-1}+1=0\Leftrightarrow x^2+x-1=0\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)(thỏa mãn)

vậy x=\(\frac{1\pm\sqrt{5}}{2}\)là nghiệm của phương trình

Đây mà toán lớp 1 à.

24 tháng 1 2019

Chà chà :) toán lớp 1 khó phết chứ đùa :3 phải đi học lại lớp 1 thôi

Cái này đâu phải là Toán lớp một đâu

19 tháng 3 2020

\(4x^2+9x-145=0\)

\(\Leftrightarrow4x^2+29x-20x-145=0\)

\(\Leftrightarrow x\left(4x+29\right)-5\left(4x+29\right)=0\)

\(\Leftrightarrow\left(4x+29\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x+29=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=-29\\x=5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{29}{4}\\x=5\end{cases}}}\)

Vậy ...

19 tháng 3 2020

\(x^2+8x-240=0\)

\(\Leftrightarrow x^2+8x=240\)

\(\Leftrightarrow\left(x-12\right)\left(x+20\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-12=0\\x+20=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=12\\x=-20\end{cases}}\)

Vậy ...

2 tháng 1 2017

Potaycom 

Mình tìm lời lớp 3 đang chịu lớp một sao hỏa chăng

3 tháng 8 2020

Cho x; y \(\inℤ\)?

Bg

Ta có: \(\hept{\begin{cases}\left(x+y\right)^2=9\\x^2+y^2=5\end{cases}}\)  (x; y \(\inℤ\))

Xét (x + y)2 = 9

=> x2 + 2xy + y2 = 9

=> x2 + y2 + 2xy = 9

Mà x2 + y2 = 5 (đề cho)

=> 5 + 2xy = 9

=> 2xy = 9 - 5

=> 2xy = 4

=> xy = 4 : 2

=> xy = 2 = 1.2 = 2.1 = -1.-2 = -2.-1

Vậy các cặp số nguyên {x; y} là: {1; 2}; {2; 1}; {-1; -2}; {-2; -1}

3 tháng 8 2020

\(\hept{\begin{cases}\left(x+y\right)^2=9\left(1\right)\\x^2+y^2=5\left(2\right)\end{cases}}\)

Lấy pt (1) trừ pt (2) theo vế với vế, ta được :

\(\left(x+y\right)\left(x+y\right)-x^2-y^2=4\)

\(\Rightarrow x^2+yx+xy+y^2-x^2-y^2=4\)

\(\Rightarrow2xy=4\)

\(\Rightarrow xy=2\)

Còn lại dễ rồi 

15 tháng 8 2018

đây là toán lớp 1 hả

15 tháng 8 2018

thế này thì 5 năm sau chắc hs lp 1 cng ko nghĩ ra mất