Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(-2x^2+x+1-2\sqrt[]{x^2+x+1}=0\)
\(\Leftrightarrow2\sqrt[]{x^2+x+1}=-2x^2+x+1\left(1\right)\)
Ta có :
\(2\sqrt[]{x^2+x+1}=2\sqrt[]{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge\sqrt[]{3}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow-2x^2+x+1=\sqrt[]{3}\)
\(\Leftrightarrow2x^2-x+\sqrt[]{3}-1=0\)
\(\Delta=1-8\left(\sqrt[]{3}-1\right)=9-8\sqrt[]{3}\)
\(pt\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\\x=\dfrac{1-\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\end{matrix}\right.\) \(\left(vì.x=-\dfrac{1}{2}\right)\)
Vậy phương trình cho vô nghiệm
Câu 4:
Giả sử điều cần chứng minh là đúng
\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)
Vậy điều cần chứng minh là đúng
2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)
⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)
⇔ x = 5
Vậy S = {5}
Điều kiện xác định bạn tự giải nhé :)
\(\frac{\sqrt{\left(5-3x\right)^2}-\sqrt{\left(x-1\right)^2}}{x-3+\sqrt{\left(3+2x\right)^2}}=4\Leftrightarrow\frac{\left|5-3x\right|-\left|x-1\right|}{x-3+\left|2x+3\right|}=4\)
Xét các trường hợp :
1. Nếu \(1\le x\le\frac{5}{3}\).............................
2. Nếu \(-\frac{3}{2}\le x< 1\)................................
3. Nếu \(x< -\frac{3}{2}\).........................................
4. Nếu \(x>\frac{5}{3}\)...........................................
PT tương đương
\(\left(x^2+7x+6\right)\left(x^2+5x+6\right)=\dfrac{-3x^2}{4}\)
Xét \(x=0\Rightarrow6.6=0\)(vô lý)
Xét \(x\ne0\). Ta chia 2 vế của PT cho \(x^2\ne0\). PT tương đương
\(\left(x+\dfrac{6}{x}+7\right)\left(x+\dfrac{6}{x}+5\right)=\dfrac{-3}{4}\)
Đặt \(x+\dfrac{6}{x}+5=t\)
PT\(\Leftrightarrow t\left(t+2\right)=\dfrac{-3}{4}\Leftrightarrow t^2+2t+1=\dfrac{1}{4}\)
\(\Leftrightarrow\left(t+1\right)^2=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}t+1=\dfrac{-1}{2}\\t+1=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-3}{2}\\t=\dfrac{-1}{2}\end{matrix}\right.\)
Đến đây bạn thay vào là tìm được nghiệm nhé.
Ta có điều kiện xác định của phương trình : \(1\le x\le2\)
Xét Với \(x\ge1\) thì \(\sqrt{x+1}\ge\sqrt{2};\sqrt{x+3}\ge2;2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}\ge0\)
\(\Rightarrow VT\ge2+\sqrt{2}>2\) (1)
Và : \(4-2x\le4-2.1=2\) => \(VP\le2\) (2)
Từ (1) và (2) suy ra không có giá trị nào của x thỏa mãn điều kiện trên.
Vậy PT đã cho vô nghiệm.
Ta có (x2+3x-4)+3(x2+3x-4)=x+4
(x2+3x-4)(1+3)=x+4
4(x-1)(x+4)-(x+4)=0
(x+4)(4x-4-1)=0
(x+4)(4x-5)=0
\(\orbr{\begin{cases}x=-4\\x=\frac{5}{4}\end{cases}}\)
Đặt \(a=2x^2+x-2014\) , \(b=x^2-5x-2013\)
thì \(a^2+4b^2=4ab\Leftrightarrow a^2-4ab+4b^2=0\Leftrightarrow\left(a-2b\right)^2=0\)
Thay vào được \(\left[\left(2x^2+x-2014\right)-2\left(x^2-5x-2013\right)\right]^2=0\)
\(\Leftrightarrow11x+2012=0\Leftrightarrow x=-\frac{2012}{11}\)
Xét x = 0 khi đó PT vô nghiệm
Xét x khác 0 thì ta có:
\(PT\Leftrightarrow\frac{x^2-2x+4}{x}\cdot\frac{x^2+3x+4}{x}=\frac{14x^2}{x^2}\)
\(\Leftrightarrow\left(x-2+\frac{4}{x}\right)\left(x+3+\frac{4}{x}\right)=14\)
Đặt \(x+\frac{4}{x}=y\) khi đó:
\(PT\Leftrightarrow\left(y-2\right)\left(y+3\right)=14\)
\(\Leftrightarrow y^2+y-20=0\)
\(\Leftrightarrow\left(y-4\right)\left(y+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-4=0\\y+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=4\\y=-5\end{cases}}\)
Nếu \(y=4\Leftrightarrow x+\frac{4}{x}=4\Leftrightarrow\frac{x^2+4}{x}=4\)
\(\Leftrightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Rightarrow x=2\)
Nếu \(y=-5\Leftrightarrow x+\frac{4}{x}=-5\)
\(\Leftrightarrow x^2+5x+4=0\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
Vậy \(S=\left\{-4;-1;2\right\}\)