\(\left(x-2\right)^4+\left(x+5\right)^4=16\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2016

Nghiệm lẽ hoặc vô nghiệm xem lại đề

 

19 tháng 2 2020

x4-16+x4+625=16

x4+x4+625-16=16

x4+x4+609=16

x4+x4=16-609

x4+x4=-593

Xem lại đề đi,sai đề bài rồi

24 tháng 2 2016

Đặt a=x+4 ta được:

(a-1)4+(a+1)4=16

<=>2a4+6a2+2=16

<=>2a4+12a2-14=0

Đặt t=a2(t\(\ge\) 0) ta được:

2t2+12t-14=0

\(\Delta=256\Rightarrow\sqrt{\Delta}=16;\Delta>0,\text{pt có 2 nghiệm phân biệt: }t_1=1\left(thỏa\right);t_2=-7\left(loại\right)\)

t=1=>a2=1 =>a=\(\pm1\)

Với a=1 =>x=-3

Với a=-1 =>x=-5

24 tháng 2 2016

Đặt a=x+4 ta được:

(a-1)4+(a+1)4=16

<=>2a4+6a2+2=16

<=>2a4+12a2-14=0

Đặt t=a2(t≥≥ 0) ta được:

2t2+12t-14=0

Δ=256⇒Δ−−√=16;Δ>0,pt có 2 nghiệm phân biệt: t1=1(thỏa);t2=−7(loại)Δ=256⇒Δ=16;Δ>0,pt có 2 nghiệm phân biệt: t1=1(thỏa);t2=−7(loại)

t=1=>a2=1 =>a=±1±1

Với a=1 =>x=-3

Với a=-1 =>x=-5

5 tháng 2 2016

em dùng phương pháp đặt ẩn phụ , rồi bình phương 2 vế là xong ngay

 

6 tháng 2 2016

ok

16 tháng 2 2016

a) Ta có:

\(M\left(x\right)=A\left(x\right)-2.B\left(x\right)+C\left(x\right)\)

\(=\left(2x^5-4x^3+x^2-2x+2\right)-2.\left(x^5-2x^4+x^2-5x+3\right)+\left(x^4+3x^3+3x^2-8x+4\frac{3}{16}\right)\)

\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+x^4+4x^3+3x^2-8x+\frac{67}{16}\)

\(=\left(2x^5-2x^5\right)+\left(4x^4+x^4\right)+\left(-4x^3+4x^3\right)+\left(x^2-2x^2+3x^2\right)+\left(-2x+10x-8x\right)+\left(2-6+\frac{67}{16}\right)\)

\(=0+5x^4+0+2x^2+0+\frac{3}{16}\)

\(=5x^4+2x^2+\frac{3}{16}\)

b) Thay  \(x=-\sqrt{0,25}=-0,5\); ta có:

\(M\left(-0,5\right)=5.\left(-0,5\right)^4+2.\left(-0,5\right)^2+\frac{3}{16}\)

\(=5.0,0625+2.0,25+\frac{3}{16}\)

\(=\frac{5}{16}+\frac{8}{16}+\frac{3}{16}=\frac{16}{16}=1\)

c) Ta có:

\(x^4\ge0\) với mọi x

\(x^2\ge0\) với mọi x

\(\Rightarrow5x^4+2x^2+\frac{3}{16}>0\) với mọi x

Do đó không có x để M(x)=0

31 tháng 1 2016

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

=> \(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+....+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)

<=> \(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)

<=> \(\frac{7}{\left(x+2000\right)\left(x+2007\right)}=\frac{7}{8}\Leftrightarrow\left(x+2000\right)\left(x+2007\right)=8\)

=> x = -1999 hoặc x = - 2008