K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2021

Ta có:\(\left(2x-5\right)\left(\sqrt{x+3}-1\right)=2x^2-x-10\)

     \(\Leftrightarrow\left(2x-5\right)\left(\sqrt{x+3}-1\right)-\left(2x^2-x-10\right)=0\)

    \(\Leftrightarrow\left(2x-5\right).\dfrac{\left(x+2\right)}{\sqrt{x+3}+1}-\left(2x-5\right)\left(x+2\right)=0\)

    \(\Leftrightarrow\left(2x-5\right)\left(x+2\right)\left(\dfrac{1}{\sqrt{x+3}+1}-1\right)=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\x+2=0\\\dfrac{1}{\sqrt{x+3}+1}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\\\dfrac{1}{\sqrt{x+3}+1}=1\left(1\right)\end{matrix}\right.\)

Giải (1) ta có:

\(\left(1\right)\Leftrightarrow1=\sqrt{x+3}+1\)

      \(\Leftrightarrow\sqrt{x+3}=0\)

      \(\Leftrightarrow x+3=0\)

      \(\Leftrightarrow x=-3\)

Vậy,phương trình có 3 nghiệm là.....

25 tháng 5 2023

b) Xét phương trình 2 có 
(1-x2 )/(1+xy)2 - (x+y)2    - y2 =1
=>(1-x2)/1+2xy+x2y2-x2-2xy-y2   -y2=1
=>(1-x2) /(1-x2 )-y2(1-x2)       -y2 =1
=>(1-x2)/(1-x2)(1-y2)       -y2=1
=>1/(1-y2)    -y2=1
=>1=(1-y2)2
=>1=1-2y2+y4
=>y4-2y2=0
=>y2(y2-2)=0
=>y=0
y2-2=0
=> y=+√2
=> y=-√2
 Thay y vào phương trình 1 là ra x 

 

 

25 tháng 5 2023

à nhầm ... sửa lại dòng 6 
=> 1/(1-y2) - y2=1
=> 1/(1-y2)=1+y2

=> 1=1-y4
=> y=0
=>x=3
=> x=
-3
 

4 tháng 4 2017

a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0

=> hoặc (3x2 - 7x – 10) = 0 (1)

hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)

Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0

nên

x1 = - 1, x2 = =

Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0

nên

x3 = 1, x4 =

b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0

=> hoặc x + 3 = 0

hoặc x2 - 2 = 0

Giải ra x1 = -3, x2 = -√2, x3 = √2

c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0

=> hoặc 0,6x + 1 = 0 (1)

hoặc x2 – x – 1 = 0 (2)

(1) ⇔ 0,6x + 1 = 0

⇔ x2 = =

(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5

x3 = , x4 =

Vậy phương trình có ba nghiệm:

x1 = , x2 = , x3 = ,

d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0

⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0

⇔ (2x2 + x)(3x – 10) = 0

⇔ x(2x + 1)(3x – 10) = 0

Hoặc x = 0, x = , x =

Vậy phương trình có 3 nghiệm:

x1 = 0, x2 = , x3 =



12 tháng 5 2019

Ta có \(\left(x+2\right)\left(y+3\right)+\left(x+4\right)\left(y+1\right)=2xy+4x+6y+10=30\)

Đặt \(x+2=a,y+1=b\)

Ta có hệ mới

\(\hept{\begin{cases}\frac{1}{a\left(a+2\right)}+\frac{1}{b\left(b+2\right)}=\frac{2}{15}\left(1\right)\\a\left(b+2\right)+b\left(a+2\right)=30\left(2\right)\end{cases}}\)

Lấy (1).(2)

=>\(\frac{a}{b}+\frac{b}{a}+\frac{a+2}{b+2}+\frac{b+2}{a+2}=4\)

Nếu a,b khác dấu 

=> \(VT\le-4\)(loại)

Nếu a,b cùng dấu 

=> \(VT\ge4\)

Dấu bằng xảy ra khi a=b=3 hoặc a=b=-5

=> x=1,y=2 hoặc x=-7,y=-6 (thỏa mãn điều kiện xác định)

Vậy x=1,y=2 hoặc x=-7,y=-6

19 tháng 5 2019

bn nào giải thick cho mk đoạn cùng dấu và trái dấu với 

tại sao cùng dấu lại >=4

trái dấu lại<=4

và làm thế nào để tính a,b

20 tháng 1 2023

Thấy : \(x^2-4x+16=\left(x-2\right)^2+12>0\forall x\)

P/t \(\Leftrightarrow2\left(x^2-4x+16\right)-36+\sqrt{x^2-4x+16}=0\)

Đặt \(t=\sqrt{x^2-4x+16}>0\) ; khi đó : 

\(2t^2+t-36=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-\dfrac{9}{2}\left(L\right)\end{matrix}\right.\)

Với t = 4  hay \(\sqrt{x^2-4x+16}=4\Leftrightarrow x^2-4x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy ... 

 

20 tháng 1 2023
26 tháng 10 2021

\(ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-2\sqrt{2x^2+5x-3}=1+x\sqrt{2x-1}-2x\sqrt{x+3}\\ \Leftrightarrow\left(2x-2\right)-\left(2\sqrt{2x^2+5x-3}-4\right)=\left(x\sqrt{2x-1}-x\right)-\left(2x\sqrt{x+3}-4x\right)-3x+3\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(2x^2+5x-7\right)}{\sqrt{2x^2+5x-3}+4}=\dfrac{x\left(2x-2\right)}{\sqrt{2x-1}+1}-\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}-3\left(x-1\right)\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(x-1\right)\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x\left(x-1\right)}{\sqrt{2x-1}+1}+\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}+3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3=0\left(1\right)\end{matrix}\right.\)

Với \(x\ge\dfrac{1}{2}\Leftrightarrow-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}>-\dfrac{2\cdot8}{4}=-4\)

\(-\dfrac{2x}{\sqrt{2x-1}+2}>-\dfrac{1}{2};\dfrac{2x}{\sqrt{x+3}+4x}>0\)

Do đó \(\left(1\right)>2-4-\dfrac{1}{2}+3=\dfrac{1}{2}>0\) nên (1) vô nghiệm

Vậy PT có nghiệm duy nhất \(x=1\)