\(\left(2+\sqrt{2}\right)^x+2^x\left(2-\sqrt{2}\right)^x=1+4^x\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

Vì \(\left(2+\sqrt{2}\right)^x.2^x\left(2-\sqrt{2}\right)^x=4^x\)

nên ta đặt \(a=\left(2+\sqrt{2}\right)^x>0;b=2^x\left(2-\sqrt{2}\right)^x>0\Rightarrow a.b=4^x\)

Phương trình trở thành \(a+b=1+ab\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\Rightarrow\left[\begin{array}{nghiempt}a=1\\b=1\end{array}\right.\)

Suy ra \(\left[\begin{array}{nghiempt}\left(2+\sqrt{2}\right)^x=1\\2^x\left(2-\sqrt{2}\right)^x=1\end{array}\right.\)\(\Leftrightarrow x=0\)

Vậy nghiệm của bất phương trình đã cho là \(x=0\)

7 tháng 4 2017

lời giải

a)

\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)

\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)

\(\Leftrightarrow2x\le4\Rightarrow x\le2\)

\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)

\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)

8 tháng 5 2017

c)Đkxđ: x0
x+x>(2x+3)(x1)
x+x>2x+x3
x3>0
x>3. (tmđk).
 

7 tháng 4 2017

Lời giải

a) \(\sqrt{\left(x-4\right)^2\left(x+1\right)}>0\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x+1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ne4\\x>-1\end{matrix}\right.\)

b) \(\sqrt{\left(x+2\right)^2\left(x-3\right)}>0\Rightarrow\left\{{}\begin{matrix}x\ne-2\\x-3>0\end{matrix}\right.\) \(\Rightarrow x>3\)

1: \(\Leftrightarrow\left(x+4\right)^2+\sqrt{x}-6x-14x=0\)

\(\Leftrightarrow\left(x+4\right)^2+\sqrt{x}-20x=0\)

\(\Leftrightarrow\left(x+4+5\sqrt{x}\right)\left(x+4-4\sqrt{x}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

=>x=4

2: \(\Leftrightarrow\left(x+2\right)^2+6\sqrt{x}+8x-4\sqrt{x}-4=0\)

\(\Leftrightarrow\left(x+2\right)^2+2\sqrt{x}+8x-4=0\)

\(\Leftrightarrow x^2+4x+4+2\sqrt{x}+8x-4=0\)

\(\Leftrightarrow x^2+12x+2\sqrt{x}=0\)

=>x=0

22 tháng 7 2016

ĐK: 2x23x40,x12x2−3x−4≥0,x≥1

PTx2+x1+2x(x1)(x+1)=2x23x4⇔x2+x−1+2x(x−1)(x+1)=2x2−3x−4

x24x3=2(x2x)(x+1)⇔x2−4x−3=2(x2−x)(x+1)

(x2x)3(x+1)=2(x2x)(x+1)⇔(x2−x)−3(x+1)=2(x2−x)(x+1)

Đặt x2x=a0,x+1=b>0x2−x=a≥0,x+1=b>0

Khi đó ta có: a23b2=2aba2−3b2=2ab

(ab)22.ab3=0⇒(ab)2−2.ab−3=0

ab=3⇔ab=3 hoặc ab=1ab=−1(loại vì a,b>0a,b>0)

ab=3x2x=3x+1

NV
17 tháng 9 2022

a/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow x+1-\sqrt{2x+2}+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\frac{x^2+2x+1-2x-2}{x+1+\sqrt{2x+2}}+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{x+1+\sqrt{2x+2}}+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

\(\Rightarrow x=1\)

2/ ĐKXĐ:\(\left[{}\begin{matrix}x=0\\x\ge2\\x\le-3\end{matrix}\right.\)

- Nhận thấy \(x=0\) là 1 nghiệm

- Với \(x\ge2\):

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x-2}=2\sqrt{x+3}=\sqrt{4x+12}\)

Ta có \(VT\le\sqrt{2\left(x-1+x-2\right)}=\sqrt{4x-6}< \sqrt{4x+12}\)

\(\Rightarrow VT< VP\Rightarrow\) pt vô nghiệm

- Với \(x\le-3\)

\(\Leftrightarrow\sqrt{1-x}+\sqrt{2-x}=2\sqrt{-x-3}\)

\(\Leftrightarrow3-2x+2\sqrt{x^2-3x+2}=-4x-12\)

\(\Leftrightarrow2\sqrt{x^2-3x+2}=-2x-15\) (\(x\le-\frac{15}{2}\))

\(\Leftrightarrow4x^2-12x+8=4x^2+60x+225\)

\(\Rightarrow x=-\frac{217}{72}\left(l\right)\)

Vậy pt có nghiệm duy nhất \(x=0\)

NV
17 tháng 9 2022

Bài 3: ĐKXĐ: \(-3\le x\le6\)

Đặt \(\sqrt{3+x}+\sqrt{6-x}=t\) \(\Rightarrow3\le t\le3\sqrt{2}\)

\(t^2=9+2\sqrt{\left(3+x\right)\left(6-x\right)}\Rightarrow-\sqrt{\left(3+x\right)\left(6-x\right)}=\frac{9-t^2}{2}\)

Phương trình trở thành:

\(t+\frac{9-t^2}{2}=m\Leftrightarrow-t^2+2t+9=2m\) (2)

a/ Với \(m=3\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{3+x}+\sqrt{6-x}=3\)

\(\Leftrightarrow2\sqrt{\left(3+x\right)\left(6-x\right)}=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)

b/ Xét hàm \(f\left(t\right)=-t^2+2t+9\) trên \(\left[3;3\sqrt{2}\right]\)

\(-\frac{b}{2a}=1< 3\Rightarrow\) hàm số nghịch biến trên \(\left[3;3\sqrt{2}\right]\)

\(f\left(3\right)=6\) ; \(f\left(3\sqrt{2}\right)=6\sqrt{2}-9\)

\(\Rightarrow6\sqrt{2}-9\le2m\le6\Rightarrow\frac{6\sqrt{2}-9}{2}\le m\le3\)

Bài 4 làm tương tự bài 3