Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ sửa đề bài là \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\)
a) ĐKXĐ: \(3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)
Phương trình đã cho tương đương với: \(\hept{\begin{cases}-4x^2+21x-22\ge0\\3x-2=16x^4-168x^3+617x^2-924x+484\end{cases}}\)
Giải nhanh bđt ta được: \(\hept{\begin{cases}\frac{21-\sqrt{89}}{8}\le x\le\frac{21+\sqrt{89}}{8}\\16x^4-168x^3+617x^2-927x+486=0\end{cases}}\)
Giải phương trình \(16x^4-168x^3+617x^2-927x+486=0\)
\(\Leftrightarrow\left(4x^2-23x+27\right)\left(4x^2-19x+18\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{23+\sqrt{97}}{8}\\x=\frac{23-\sqrt{97}}{8}\end{cases}}hay\orbr{\begin{cases}x=\frac{19+\sqrt{73}}{8}\\x=\frac{19-\sqrt{73}}{8}\end{cases}}\)
So với điều kiện, ta kết luận phương trình có tập nghiệm \(S=\left\{\frac{23-\sqrt{97}}{8};\frac{19+\sqrt{73}}{8}\right\}\)
Tặng bạn câu này, chúc bạn học tốt. Câu sau bạn tự làm nha
Bàii làm
a) ( x - 2 )( x - 3 ) = x2 - 4
<=> x2 - 2x - 3x + 6 = x2 - 4
<=> x2 - x2 - 5x + 6 - 4 = 0
<=> -5x + 2 = 0
<=> -5x = -2
<=> x = 2/5
Vậy x = 2/5 là nghiệm phương trình.
b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{x+6}{x\left(x-2\right)}\)
=> x( x + 2 ) - ( x - 2 ) = x + 6
<=> x2 + 2x - x + 2 - x - 6 = 0
<=> x2 - 4 = 0
<=> x2 = 4
<=> x = + 4
Vậy nghiệm S = { + 4 }
c) \(\frac{2x-1}{-3}>1\)
\(\Leftrightarrow\frac{2x-1}{-3}.\left(-3\right)< 1\left(-3\right)\)
\(\Leftrightarrow2x-1< -3\)
\(\Leftrightarrow2x< -2\)
\(\Leftrightarrow x< -1\)
Vậy nghiệm bất phương trình S = { x / x < -1 }
d) ( x - 1 )2 < 5 - 2x
<=> x2 - 2x + 1 < 5 - 2x
<=> x2 - 2x + 1 - 5 + 2x < 0
<=> x2 - 4 < 0
<=> x2 < 4
<=> x < + 2
Vậy tập nghiệm S = { x / x < +2 }
a) Ta thấy x - 1 \(\ne\)0 vì x = 1 không nghiệm đúng phương trình
Nhân hai vế của phương trình với x - 1 \(\ne\)0 ta được x5 -1 = 0 hay x = 1 ,không thỏa mãn điều kiện trên .
Vậy phương trình vô nghiệm .
b) Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2.x-3\right).\left(2.x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}\)
<=> 3.(x-2)2 - 3. ( 2.x - 3 ) . ( 2.x + 3 )+ 4. ( x-4 )2 = 0
<=> 3. ( x - 4.x + 4 ) - 3. ( 4.x2 -9 ) + 4. ( x2 -8.x + 16 ) = 0
<=> -5.x2 -44.x + 103 = 0
<=> \(\orbr{\begin{cases}x=\frac{-22+3\sqrt{111}}{5}\\x=\frac{-22-3\sqrt{111}}{5}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{-22+3\sqrt{111}}{5}\\x=\frac{-22-3\sqrt{111}}{5}\end{cases}}\)
a) Ta thấy x - 1 \(\ne\)0 vì x = 1 không nghiệm đúng phương trình
Nhân hai vế của phương trình với x - 1 \(\ne\)0 ta được x5 -1 = 0 hay x = 1 ,không thỏa mãn điều kiện trên .
Vậy phương trình vô nghiệm .
b) Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2.x-3\right).\left(2.x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}\)
<=> 3.(x-2)2 - 3. ( 2.x - 3 ) . ( 2.x + 3 )+ 4. ( x-4 )2 = 0
<=> 3. ( x - 4.x + 4 ) - 3. ( 4.x2 -9 ) + 4. ( x2 -8.x + 16 ) = 0
<=> -5.x2 -44.x + 103 = 0
<=> \(\orbr{\begin{cases}x=\frac{-22+3\sqrt{111}}{5}\\x=\frac{-22-3\sqrt{111}}{5}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{-22+3\sqrt{111}}{5}\\x=\frac{-22-3\sqrt{111}}{5}\end{cases}}\)
tớ ko bt lm abc , tớ lm d thôi nha , thứ lỗi
\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)
\(\frac{3x+13}{2x^2+x-6}=\frac{5}{x-6}+\frac{7}{1-2x}\)
\(\frac{3x+13}{\left(x+2\right)\left(2x-3\right)}=\frac{3x+37}{\left(x-6\right)\left(2x-1\right)}\)
\(\frac{10-9x}{-4x^3+32x^2-51x+18}=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{10}{9}\end{cases}}\)
Vì mẫu số phải \(\ne0\) nen \(\left(\sqrt{6^2-x^2}-3\right)^2\ne0\)
\(< =>\sqrt{6^2-x^2}-3\ne0\)
\(< =>\sqrt{36-x^2}\ne3\)
\(< =>36-x^2\ne9\)
\(< =>x^2\ne27\)
\(< =>x\ne\pm3\sqrt{3}\) ( phần này bạn làm ở ngoài giấy nháp nha )
Điều kiện xác định : \(x\ne3\sqrt{3}\) \(va\) \(x\ne-3\sqrt{3}\)
\(\frac{x^2}{\left(\sqrt{6^2-x^2-3}\right)^2}=4\)
\(< =>\frac{x^2}{\left(\sqrt{6x^2-x^2}-3\right)^2}=\frac{4\left(\sqrt{6^2-x^2}-3\right)^2}{\left(\sqrt{6^2-x^2}-3\right)^2}\)
\(< =>x^2=4\left(\sqrt{6^2-x^2}-3\right)^2\)
\(< =>x^2=4.\left[\left(\sqrt{36-x^2}\right)^2-2\sqrt{36-x^2}.3+9\right]\)
\(< =>x^2=4.\left[\left(36-x^2\right)-\sqrt{6^2.\left(36-x^2\right)}+9\right]\)
\(< =>x^2=4.\left(36-x^2\right)-4.\sqrt{\left(1296-36x^2\right)}+4.9\)
\(< =>x^2=144-4x^2-\sqrt{4^2.\left(1296-36x^2\right)}+36\)
\(< =>x^2=144-4x^2-\sqrt{20736-576x^2}+36\)
\(< =>x^4=20736-16x^4-\left(20736-576x^2\right)+1296\)
\(< =>x^4=20736-16x^4-20736+576x^2+1296\)
\(< =>x^4+16x^4-576x^2-20736+20736-1296=0\)
\(< =>17x^4-576x^2-1296=0\)
\(\left(a=17;b=576;b'=288;c=-1296\right)\)
\(\Delta'=b'^2-ac\)
\(=288^2-17.\left(-1296\right)\)
\(=82944+22032\)
\(=104976\) \(>0\)
\(\sqrt{\Delta'}=\sqrt{104976}=324\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-288+324}{17}=\frac{36}{17}\) ( nhận )
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-288-324}{17}=-36\) ( nhận )
CHÚC BẠN HỌC TỐT !!!
x=18/5;-6