
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)

pT <=>\(\frac{x^4}{\left(x-2\right)^2}+\frac{x^2}{x-2}-2=0\)
đk: x khác 2
Đặt \(\frac{x^2}{x-2}=t\)
Ta có phương trình:
\(t^2+t-2=0\Leftrightarrow t^2+2t-t-2=0\Leftrightarrow t\left(t+2\right)-\left(t+2\right)=0\Leftrightarrow\left(t+2\right)\left(t-2\right)=0\)
<=> \(\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)
Với t=2 ta có:
\(\frac{x^2}{x-2}=2\Leftrightarrow x^2=2x-4\Leftrightarrow x^2-2x+4=0\Leftrightarrow\left(x-1\right)^2+3=0\)vô lí
Với t=-2:
\(\frac{x^2}{x-2}=-2\Leftrightarrow x^2=-2x+4\Leftrightarrow x^2+2x=4\Leftrightarrow\left(x+1\right)^2=5\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)(tm)
Vậy...

ĐKXĐ : x \(\ne\)0
\(\frac{x-1}{x^2-x+1}-\frac{x+1}{x^2+x+1}=\frac{10}{x.\left(x^4+x^2+1\right)}\)
\(\frac{\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)}{\left(x^2+1-x\right)\left(x^2+1+x\right)}=\frac{10}{x\left(x^4+x^2+1\right)}\)
\(\frac{\left(x^3-1\right)-\left(x^3+1\right)}{\left(x^2+1\right)^2-x^2}=\frac{10}{x.\left(x^4+x^2+1\right)}\)
\(\frac{-2}{x^4+x^2+1}=\frac{10}{x\left(x^4+x^2+1\right)}\)
\(-2x\left(x^4+x^2+1\right)=10\left(x^4+x^2+1\right)\)
\(\Rightarrow\)x = 10 : ( -2 ) = -5

phương trình tương đương với 1+\(\frac{1}{x}+1+\frac{1}{x+3}\)=1+\(\frac{1}{x+1}+1+\frac{1}{x+2}\)\(\Leftrightarrow\frac{1}{x}+\frac{1}{x+3}=\frac{1}{x+2}+\frac{1}{x+1}\)
\(\Leftrightarrow\frac{2x+3}{x\left(x+3\right)}=\frac{2x+3}{\left(x+1\right)\left(x+2\right)}\)\(\Leftrightarrow\left(2x+3\right)\left(\frac{1}{x\left(x+3\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)\)=0
\(\Leftrightarrow\left(2x+3\right)\left(\frac{\left(x+1\right)\left(x+2\right)-x\left(x+3\right)}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{2}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\right)=0\)\(\Leftrightarrow2x+3=0\Leftrightarrow x=\frac{-3}{2}\)

Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
ĐKXĐ : x ≠ ±1
pt <=> \(\frac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+4\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=2\)
<=> \(\frac{x^2-3x-4}{x^2-1}+\frac{x^2+3x-4}{x^2-1}=2\)
<=> \(\frac{2x^2-8}{x^2-1}=2\)=> 2x2 - 8 = 2( x2 - 1 )
<=> 2x2 - 2x2 = -2 + 8
<=> 0 = 6 ( vô lí )
Vậy pt vô nghiệm
\(\frac{x-4}{x-1}+\frac{x+4}{x+1}=2ĐK:x\ne\pm1\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x+1\right)+\left(x-1\right)\left(x+4\right)}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow x^2-3x-4+x^2+3x-4=2x^2-2\)
\(\Leftrightarrow0x\ne6\)Vậy phương trình vô nghiệm