
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ĐKXĐ: \(x\ne0\)
Đặt \(\sqrt{x^2+5}=t>0\Rightarrow5=t^2-x^2\)
Quy pt về: \(\frac{t^2-x^2}{x^2}+\frac{2x}{t}=1\)
\(\Leftrightarrow\frac{t^2}{x^2}+\frac{2x}{t}-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{t}{x}=\sqrt{3}-1\\\frac{t}{x}=-1-\sqrt{3}\end{cases}}\) . Thử từng trường hợp, nhân chéo lên, thay ẩn đã đặt vào, bình phương 2 vế là xong ạ!
Ko chắc~


1) đặt đk rùi bình phương 2 vế là ok
2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))
<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)
<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)
<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)
<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)
đến đây bình phương 2 vế rùi giải bình thường nhé

1/ \(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
\(\Leftrightarrow\frac{3-x}{\sqrt{5-x}}+\frac{3+x}{\sqrt{5+x}}=\frac{4}{3}\)
Đặt \(\hept{\begin{cases}\sqrt{5-x}=a\\\sqrt{5+x}=b\end{cases}}\) thì ta có:
\(\hept{\begin{cases}\frac{a^2-2}{a}+\frac{b^2-2}{b}=\frac{4}{3}\\a^2+b^2=10\end{cases}}\)
Tới đây thì đơn giản rồi nhé
điều kiện x khác 0
\(\frac{5}{x^2}+\frac{2}{\sqrt{1+\frac{5}{x^2}}}=1\)
đặt \(\frac{5}{x^2}=a\left(a>0\right)\)=> a+\(\frac{2}{\sqrt{1+a}}=1\) (1)
<=> \(1-a=\frac{2}{\sqrt{1+a}}>0=>a< 1\)
với a<1 thì \(\frac{2}{\sqrt{1+a}}>\frac{2}{\sqrt{1+1}}=\sqrt{2}>1\) kết hợp với a> 0 => (1) vô nghiệm hay pt đã cho vô nghiệm
em nhổ tóc đầu cho bạn học 13 tuổi không may bị bay mất một khoảng tóc liệu có mọc lại không xin được tư vấn