\(\frac{3x}{\sqrt{3x+10}}\)=\(\sqrt{3x+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)(đk: \(x\ge-\frac{1}{3}\))(1)

đặt \(\sqrt{3x+1}=a\ge0\)

khi đó:

(1) \(\Leftrightarrow\frac{a^2-1}{a+9}=a-1\)

\(\Leftrightarrow a^2-1=a^2+8a-9\)

\(\Leftrightarrow8a=8\Leftrightarrow a=1\left(tm\right)\)

\(\Leftrightarrow\sqrt{3x+1}=1\Leftrightarrow x=0\left(tm\right)\)

vậy x=0 là nghiệm của phương trình

* mk k chắc lắm đâu có j sai bạn sửa cho mk nhé

6 tháng 11 2018

a) ĐK:  \(x\ge2\)

\(\sqrt{x-1}=1+\sqrt{x-2}\)

<=>\(x-1=1+x-2+2\sqrt{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loại\right)\\x=2\left(tm\right)\end{cases}}}\)

b) ĐK: x>=10/3

Đặt:\(\sqrt{3x-10}=t\left(t\ge0\right)\Rightarrow3x=t^2+10\)

\(x^2+3\left(t^2+10\right)+20=2t\)

\(\Leftrightarrow x^2+3t^2-2t+50=0\)

\(\Leftrightarrow x^2+3\left(t^2-2.t.\frac{1}{3}+\frac{1}{9}\right)-\frac{1}{3}+50=0\)

<=>\(x^2+3\left(t-\frac{1}{3}\right)^2+\frac{149}{3}=0\)phương trình voo ngiệm

vào trong câu hỏi khác của mình rồi trả lời với mình xin các cậu đúng cho 3 k 

12 tháng 9 2018

\(\sqrt{5-x^6}=\sqrt[3]{3x^4-2}+1\) 

Xét \(\left|x\right|=1\Leftrightarrow\sqrt{5-1}=\sqrt[3]{3-2}+1\)(đúng) 

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\) 

Xét \(\left|x\right|>1\Rightarrow\sqrt{5-x^6}< \sqrt[3]{3x^4-2}+1\)(loại) 

Xét \(\left|x\right|< 1\Rightarrow\sqrt{5-x^6}>\sqrt[3]{3x^4-2}+1\)(loại) 

Vậy Pt có nghiệm (1;-1)

NV
12 tháng 11 2018

TXĐ: \(x\ge0\)

Phương trình đã cho tương đương:

\(\dfrac{\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(\sqrt{2x+1}+\sqrt{3x}\right)}{\sqrt{2x+1}+\sqrt{3x}}=x-1\)

\(\Leftrightarrow\dfrac{2x+1-3x}{\sqrt{2x+1}+\sqrt{3x}}=x-1\Leftrightarrow\dfrac{-\left(x-1\right)}{\sqrt{2x+1}+\sqrt{3x}}=x-1\)

\(\Leftrightarrow\left(x-1\right)\left(1+\dfrac{1}{\sqrt{2x+1}+\sqrt{3x}}\right)=0\)

\(\Leftrightarrow x-1=0\) (do \(1+\dfrac{1}{\sqrt{2x+1}+\sqrt{3x}}>0\) \(\forall x\ge0\))

\(\Leftrightarrow x=1\)

12 tháng 11 2018

\(\sqrt{2x+1}-\sqrt{3x}=x-1\)

Điều kiện : x\(\ge0\)

\(\Leftrightarrow\sqrt{2x+1}=x-1+\sqrt{3x}\)

\(\Leftrightarrow\left(\sqrt{2x+1}\right)^2=\left(x-1+\sqrt{3x}\right)^2\)

\(\Leftrightarrow2x+1=\left(x-1\right)^2+2\left(x-1\right)\sqrt{3x}+3x\)

\(\Leftrightarrow2x+1=x^2-2x+1+2\left(x-1\right)\sqrt{3x}+3x\)

\(\Leftrightarrow2x+1-x^2-x-x-2\left(x-1\right)\sqrt{3x}=0\)

\(\Leftrightarrow-x^2+x-2\left(x-1\right)\sqrt{3x}=0\)

\(\Leftrightarrow-x\left(x-1\right)-2\left(x-1\right)\sqrt{3x}=0\)

\(\Leftrightarrow\left(x-1\right)\left(-x-2\sqrt{3x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-x-2\sqrt[]{3x}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\-\sqrt{x}\left(\sqrt{x}+2\sqrt{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-\sqrt{x}=0\\\sqrt{x}+2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\\sqrt{x}=-2\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x\in\varnothing\end{matrix}\right.\) Vậy pt tập nghiệm S={1;0}

15 tháng 12 2017

Đặt \(\sqrt{x+1}=a\)                                            \(ĐKXĐ:x\ge0\)

        \(\sqrt{3x}=b\)                                               

Ta có: \(a-b=b^2-a^2\)

\(\Leftrightarrow a-b+a^2-b^2=0\)

\(\Leftrightarrow\left(a-b\right)+\left(a+b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)

Mà \(a+b+1>0\forall x\)

\(\Rightarrow a-b=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x+1}=\sqrt{3x}\)

\(\Leftrightarrow x+1=3x\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)

15 tháng 12 2017

\(ĐKXĐ:x\ge0\)

Ta có PT \(\Leftrightarrow\sqrt{x+1}-\sqrt{3x}-\left(2x-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-\frac{\sqrt{6}}{2}\right)-\left(\sqrt{3x}-\frac{\sqrt{6}}{2}\right)-\left(2x-1\right)=0\)

\(\Leftrightarrow\frac{x+1-\frac{6}{4}}{\sqrt{x+1}+\frac{\sqrt{6}}{2}}-\frac{3x-\frac{6}{4}}{\sqrt{3x}+\frac{\sqrt{6}}{2}}-\left(2x-1\right)=0\)

\(\Leftrightarrow\frac{x-\frac{1}{2}}{\sqrt{x+1}+\frac{\sqrt{6}}{2}}-\frac{3\left(x-\frac{1}{2}\right)}{\sqrt{3x}+\frac{\sqrt{6}}{2}}-2\left(x-\frac{1}{2}\right)=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)\left(\frac{1}{\sqrt{x+1}+\frac{\sqrt{6}}{2}}-\frac{3}{\sqrt{3x}+\frac{\sqrt{6}}{2}}-2\right)=0\)

\(\Rightarrow x=\frac{1}{2}\)(TMĐKXĐ)

AH
Akai Haruma
Giáo viên
30 tháng 7 2018

Lời giải:

Với mọi $x$ thuộc ĐKXĐ, ta luôn có:

\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}\geq 0\\ \sqrt{x^2+3x+1}\geq 0\end{matrix}\right.\)

Do đó, để \(\sqrt{3x+x^2+\frac{9}{4}}+\sqrt{x^2+3x+1}=0\) thì:

\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}= 0\\ \sqrt{x^2+3x+1}=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x=\frac{-3}{2}\\ x=\frac{3\pm \sqrt{5}}{2}\end{matrix}\right.\) (vô lý)

Do đó pt vô nghiệm.

30 tháng 7 2018

nếu dòng cuối tìm đc x là cùng 1 số thì số đó là nghiệm của pt đúng ko ạ?

20 tháng 8 2018

sao ko ai tra loi het vay

9 tháng 8 2019

ĐK: x>= -1/3

Ta có: \(pt\Leftrightarrow2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)

<=> \(x^2-2x\sqrt{x^2-x+1}+\left(x^2-x+1\right)+\left(3x+1\right)-2.\sqrt{3x+1}.2+4=0\)

\(\Leftrightarrow\left(x-\sqrt{x^2-x+1}\right)^2+\left(\sqrt{3x+1}-2\right)^2=0\)

Mà : \(\left(x-\sqrt{x^2-x+1}\right)^2\ge0;\left(\sqrt{3x+1}-2\right)^2\ge0\)

Khi đó: \(\left(x-\sqrt{x^2-x+1}\right)^2+\left(\sqrt{3x+1}-2\right)^2\ge0\)

Dấu "=" xảy ra khi và chỉ khi: 

\(\hept{\begin{cases}\left(x-\sqrt{x^2-x+1}\right)^2=0\\\left(\sqrt{3x+1}-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2=x^2-x+1,x\ge0\\3x+1=4\end{cases}}\Leftrightarrow x=1\)tm đk

Vậy x=1

12 tháng 8 2019

Ta có thể dùng cô si chăng?

ĐK: \(x\ge-\frac{1}{3}\)

\(VT=\sqrt{x^2\left(x^2-x+1\right)}+\sqrt{4\left(3x+1\right)}\)

\(\le\frac{x^2+x^2-x+1}{2}+\frac{4+3x+1}{2}=\frac{2x^2+2x+6}{2}=x^2+x+3=VP\)

Để đẳng thức xảy ra, tức là xảy ra đẳng thức ở phương trình thì:

\(\hept{\begin{cases}x^2=x^2-x+1\\4=3x+1\end{cases}}\Leftrightarrow x=1\)

Vậy...

Is it true??