K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

Ta có x2 -5x +7 = x2 -5x +25/4+ 3/4 = (x -5/2)2 +3/4 > 0 với mọi x

Tương tự x2 -4x +7 = x2 -4x +4+3  >0 với mọi x

Vậy pt đã cho luôn xác định với mọi x

Đặt  x2 -5x +7 = y suy ra: x2 -4x +7 = y+x ( đặt như vậy để dễ biến đổi)

Pt đã cho trở thành: 2x/(x+y) +3x/2y =1

Suy ra: 2x.2y +3x.(x+y)=2.(x+y).y

4xy +3xy +3x2= 2y2+2xy

3x2+5xy- 2y2=0

3x2+6xy – xy - 2y2=0 suy ra (3x – y)(x +2y)= 0 suy ra  y = 3x hoặc x =-2y

Với y =3x ta có, x2 -5x +7 =3x suy ra x2 -8x +7=0 suy ra x= 1; x =7

Với x =-2y ta có, x= -2(x2 -5x +7) suy ra 2x2 -9x +14=0

2.(x2 -4,5 x +7) =0 suy ra x2 -2.9/4 x +81/16 + 31/16=0 nên pt này vô nghiệm

Vậy pt đã cho có 2 nghiệm là x =1; x =7

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

17 tháng 7 2017

\(x^2-3x+\frac{7}{2}=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)

\(\Leftrightarrow2x^2-6x+7=2\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)

Đặt \(\hept{\begin{cases}\sqrt{x^2-2x+2}=a>0\\\sqrt{x^2-4x+5}=b>0\end{cases}}\)

\(\Rightarrow a^2+b^2=2ab\)

\(\Leftrightarrow\left(a-b\right)^2=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x^2-2x+2}=\sqrt{x^2-4x+5}\)

\(\Leftrightarrow2x=3\)

\(\Leftrightarrow x=\frac{3}{2}\)

17 tháng 7 2017

\(x^2-3x+\frac{7}{2}=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)

\(\Leftrightarrow x^2-3x+\frac{7}{2}-\frac{5}{4}=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}-\frac{5}{4}\)

\(\Leftrightarrow\frac{4x^2-12x+9}{4}=\frac{\left(x^2-2x+2\right)\left(x^2-4x+5\right)-\frac{25}{16}}{\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}+\frac{5}{4}}\)

\(\Leftrightarrow\frac{\left(2x-3\right)^2}{4}-\frac{x^4-6x^3+15x^2-18x+10-\frac{25}{16}}{\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}+\frac{5}{4}}=0\)

\(\Leftrightarrow\frac{\left(2x-3\right)^2}{4}-\frac{\frac{16x^4-96x^3+240x^2-288x+135}{16}}{\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}+\frac{5}{4}}=0\)

\(\Leftrightarrow\frac{\left(2x-3\right)^2}{4}-\frac{\frac{\left(2x-3\right)^2\left(4x^2-12x+15\right)}{16}}{\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}+\frac{5}{4}}=0\)

\(\Leftrightarrow\left(2x-3\right)^2\left(\frac{1}{4}-\frac{\frac{4x^2-12x+15}{16}}{\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}+\frac{5}{4}}\right)=0\)

\(\Rightarrow x=\frac{3}{2}\)

Bài làm của mk cho ai khùng thôi, bn tham khảo cx dc :v

29 tháng 8 2017

\(4\left(\frac{x^2}{2}+5x+4\right)^2\)=\(4\left(2x+1\right)\left(x^2+8x+7\right)\)

\(\Leftrightarrow\left(x^2+10x+8\right)^2=4\left(2x+1\right)\left(x^2+8x+7\right)\)

dat \(2x+1=a,x^2+8x+7=b\) \(\Rightarrow a+b=x^2+10x+8\)

pt tro thanh

\(\left(a+b\right)^2=4ab\Rightarrow a^2+2ab+b^2-4ab=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\Leftrightarrow2x+1=x^2+8x+1\)

                                                  \(\Leftrightarrow x^2+6x=0\Leftrightarrow x\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)

30 tháng 8 2017

cảm ơn bn nhìu

24 tháng 6 2019

a,ĐKXĐ \(x\ne-1;-\frac{1}{2}\)

Ta thấy x=0 không là nghiệm của PT

Xét \(x\ne0\)

Khi đó PT 

<=> \(\frac{2}{6x-1+\frac{3}{x}}+\frac{5}{4x+5+\frac{2}{x}}+\frac{1}{2x+3+\frac{1}{x}}=\frac{1}{3}\)

Đặt \(2x+\frac{1}{x}=a\)

=> \(\frac{2}{3a-1}+\frac{5}{2a+5}+\frac{1}{a+3}=\frac{1}{3}\)

<=>  \(3\left(25a^2+75a+10\right)=6a^3+31a^2+34a-15\)

<=> \(6a^3-44a^2-191a-45=0\)

Xin lỗi đến đây tớ ra nghiệm không đẹp 

24 tháng 6 2019

c, \(x^2+\frac{9x^2}{\left(x+3\right)^2}=7\)   ĐKXĐ \(x\ne-3\)

<=> \(\left(x-\frac{3x}{x+3}\right)^2+2.\frac{3x^2}{x+3}=7\)

<=> \(\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}-7=0\)

<=> \(\left(\frac{x^2}{x+3}+7\right)\left(\frac{x^2}{x+3}-1\right)=0\)

<=> \(\orbr{\begin{cases}x^2+7x+21=0\\x^2-x-3=0\end{cases}}\)

\(S=\left\{\frac{1\pm\sqrt{13}}{2}\right\}\)thỏa mãn ĐKXĐ

2 tháng 9 2015

ĐKx khác 3/4 ; 7/2 

pt <=> 4(x-1)(2x-7) = (4x-3).2(x+1) 

<=> 2(x-1)(2x-7) = (4x - 3 )(x+1)

<=> 2( 2x^2 - 9x + 7 ) = 4x^2 +x - 3 

<=> 4x^2 - 18x + 14 = 4x^2 + x - 3 

=> 19x = 17 

=> x = 17/19 ( TM) 

2 tháng 9 2015

\(\frac{4\left(x-1\right)}{4x-3}=\frac{2\left(x+1\right)}{2x-7}=>\frac{4x-4}{4x-3}=\frac{2x+2}{2x-7}=>1+\frac{1}{4x-3}=1+\frac{9}{2x-7}\) (ĐKXĐ x khác 3/4 và x khác 7/2)

=> \(\frac{1}{4x-3}=\frac{9}{2x-7}=>\frac{2x-7}{\left(4x-3\right)\left(2x-7\right)}=\frac{4x-3}{\left(4x-3\right)\left(2x-7\right)}=>2x-7=4x-3=>x=-2\). (Nghiệm này thỏa mãn ĐKXĐ)

Vậy x=2