Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{x+\frac{1}{1+\frac{x+1}{x+2}}}=\frac{6}{3x-1}\)
\(\frac{2}{x+\frac{1}{\frac{x+2+x+1}{x+2}}}=\frac{6}{3x-1}\)
\(\frac{2}{x+\frac{1}{\frac{2x+3}{x+2}}}=\frac{6}{3x-1}\)
\(\frac{2}{x+\frac{x+2}{2x+3}}=\frac{6}{3x-1}\)
\(\frac{2}{\frac{2x+3+x+2}{2x+3}}=\frac{6}{3x-1}\)
\(\frac{2}{\frac{3x+5}{2x+3}}=\frac{6}{3x-1}\)
\(\frac{4x+6}{3x+5}=\frac{6}{3x-1}\)
\(\Rightarrow\left(4x+6\right)\left(3x-1\right)=6\left(3x+5\right)\)
\(\Rightarrow12x^2-4x+18x-6=18x+30\)
\(\Rightarrow12x^2-4x+18x-18x=30+6\)
\(\Rightarrow12x^2-4x-36=0\)
\(\Rightarrow3x^2-x-9=0\)
\(\Rightarrow x^2-\frac{1}{3}x-3=0\)
\(\Rightarrow x^2-2.\frac{1}{6}x+\frac{1}{36}-\frac{1}{36}-3=0\)
\(\Rightarrow\left(x-\frac{1}{6}\right)^2-\frac{109}{36}=0\)
\(\Rightarrow\left(x-\frac{1}{6}-\frac{\sqrt{109}}{6}\right)\left(x-\frac{1}{6}+\frac{\sqrt{109}}{6}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{109}}{6}\\x=\frac{1-\sqrt{109}}{6}\end{cases}}\)
làm lại nhé, chỗ kia quy đồng sai
lần này làm theo cách khác
\(\frac{2}{x+\frac{1}{1+\frac{x+1}{x+2}}}=\frac{6}{3x-1}\)
\(\frac{2}{x+\frac{1}{\frac{x+2+x+1}{x+2}}}=\frac{2}{x-\frac{1}{3}}\)
\(\Rightarrow x+\frac{1}{\frac{2x+3}{x+2}}=x-\frac{1}{3}\)
\(\Rightarrow\frac{x+2}{2x+3}=\frac{-1}{3}\)
\(\Rightarrow\left(x+2\right).3=-1.\left(2x+3\right)\)
\(\Rightarrow3x+6=-2x-3\)
\(\Rightarrow3x+2x=-3-6\)
\(\Rightarrow5x=-9\)
\(\Rightarrow x=\frac{-9}{5}\)
vậy \(x=\frac{-9}{5}\)
\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-3}+...+\frac{1}{x-4}-\frac{1}{x-5}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{1}{x-5}=\frac{1}{8}\)
\(\Leftrightarrow\frac{x-5-x+1}{\left(x-1\right)\left(x-5\right)}=\frac{1}{8}\)
\(\Leftrightarrow-4.8=x^2-6x+5\)
\(\Leftrightarrow x^2-6x+37=0\)
\(\frac{1}{2-x}+1=\frac{1}{x+2}-\frac{6-x}{3x^2-12}\)ĐKXĐ : \(x\ne\pm2\)
\(\Leftrightarrow\frac{-3\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{3\left(x-2\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}=\frac{3\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{3\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{-3x-6+3\left(x^2-4\right)}{3\left(x-2\right)\left(x+2\right)}-\frac{3x-6+x-6}{3\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{-3x-6+3x^2-12-3x+6-x+6}{3\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{-7x-6+3x^2}{3\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow3x^2-7x-6=0\)
\(\Leftrightarrow3x^2-9x+2x-6=0\)
\(\Leftrightarrow3x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-2}{3}\end{cases}}\)( thỏa mãn )
Vậy....
Để PT đc xác định : \(x^2+3x+2\ne0;x^2+5x+6\ne0;.....;x^2+15x+56\ne0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\ne0;\left(x+2\right)\left(x+3\right)\ne0;....;\left(x+7\right)\left(x+8\right)\ne0\)
\(\Rightarrow x+1;x+2;x+3;....;x+8\ne0\)
\(\Rightarrow x\ne\left\{-8;-7;...;-3;-2;-1\right\}\)
TXĐ : \(x\ne\left\{-8;-7;...;-3;-2;-1\right\}\)
\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+....+\frac{1}{x^2+15x+56}=\frac{1}{14}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+....+\frac{1}{\left(x+7\right)\left(x+8\right)}=\frac{1}{14}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+7}-\frac{1}{x+8}=\frac{1}{14}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+8}=\frac{1}{14}\)
\(\Leftrightarrow\frac{7}{x^2+9x+8}=\frac{1}{14}\)
\(\Leftrightarrow x^2+9x+8=98\)
\(\Leftrightarrow x^2+9x-90=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+15\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-15\end{cases}}\)(TMĐKXĐ)
Vậy \(x=6\) hoặc \(x=-15\)
\(\frac{3x-1}{2}-\frac{2-6x}{5}=\frac{1}{2}+\left(3x-1\right)\)
\(\Leftrightarrow\frac{3x-1}{2}+\frac{2\left(3x-1\right)}{5}-\left(3x-1\right)=\frac{1}{2}\)
\(\Leftrightarrow\left(3x-1\right)\left(\frac{1}{2}+\frac{2}{5}-1\right)=\frac{1}{2}\)
\(\Leftrightarrow\frac{-1}{10}\left(3x-1\right)=\frac{1}{2}\)
\(\Leftrightarrow3x-1=-5\)
\(\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy nghiệm duy nhất của phương trình là\(x=\frac{-4}{3}\)
\(\left(x^2+2x+1\right)-\frac{x+1}{3}=\frac{6\left(x+1\right)^2-5x-5}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{6\left(x+1\right)^2-5\left(x+1\right)}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{\left(x+1\right)\left(6x+6-5\right)}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{\left(x+1\right)\left(6x+1\right)}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}-\frac{\left(x+1\right)\left(6x+1\right)}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-\frac{1}{3}-\frac{6x+1}{6}\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy nghiệm duy nhất của phương trình là\(x=-1\)
a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
Đặt \(x^2-2x+3=t\left(t\ge2\right)\), khi đó phương trình trở thành:
\(\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\)
\(\Leftrightarrow\frac{t\left(t+1\right)+t^2-1}{\left(t-1\right)t\left(t+1\right)}=\frac{6t\left(t-1\right)}{\left(t-1\right)t\left(t+1\right)}\)
\(\Leftrightarrow t\left(t+1\right)+t^2-1=6t\left(t-1\right)\)
\(\Leftrightarrow2t^2+t-1=6t^2-6t\)
\(\Leftrightarrow-4t^2+7t-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=\frac{7+\sqrt{33}}{8}\\t=\frac{7-\sqrt{33}}{8}\end{cases}}\left(ktmđk\right)\)
Vậy phương trình vô nghiệm.