Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\left|2x-3\right|=4\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=4\\2x-3=-4\end{cases}}\)
\(TH:2x-3=4\)
\(\Leftrightarrow2x=4+3\)
\(\Leftrightarrow2x=7\)
\(\Leftrightarrow x=\frac{7}{2}\)
\(TH:2x-3=-4\)
\(\Leftrightarrow2x=-4+3\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(x\in\left\{\frac{7}{2};\frac{-1}{2}\right\}\)
e) \(\frac{x-1}{x-3}>1\)
\(ĐKXĐ:x\ne3\)
\(\Leftrightarrow\frac{x-3+2}{x-3}>1\)
\(\Leftrightarrow\frac{x-3}{x-3}+\frac{2}{x-3}>1\)
\(\Leftrightarrow1+\frac{2}{x-3}>1\)
\(\Leftrightarrow\frac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
\(2x-2=8-3x\)
\(\Leftrightarrow\)\(2x+3x=8+2\)
\(\Leftrightarrow\)\(5x=10\)
\(\Leftrightarrow\)\(x=2\)
Vậy...
\(x^2-3x+1=x+x^2\)
\(\Leftrightarrow\)\(x^2-3x-x-x^2=-1\)
\(\Leftrightarrow\)\(-4x=-1\)
\(\Leftrightarrow\)\(x=\frac{1}{4}\)
Vậy...
mấy cái này bấm máy tính là đc òi. giải mất thời gian lắm :))
\(a)\) \(3-2x>4x+5\)
\(\Leftrightarrow\)\(3-2x+2x>4x+2x+5\)
\(\Leftrightarrow\)\(6x+5< 3\)
\(\Leftrightarrow\)\(6x+5-5< 3-5\)
\(\Leftrightarrow\)\(6x< -2\)
\(\Leftrightarrow\)\(\frac{6x}{6}< \frac{-2}{6}\)
\(\Leftrightarrow\)\(x< \frac{-1}{3}\)
Vậy \(x< \frac{-1}{3}\)
Chúc bạn học tốt ~
\(x^3-6x^2+5x+12>0\\ < =>\left(x^3-5x-x+5x\right)+12>0\\ < =>\left[\left(x^3-x\right)-\left(5x-5x\right)\right]+12>0\\ < =>x^2+12>0\\ < =>x^2>-12\\ =>x\in R\\ BPTcóvôsốnghiem\)
a) \(\frac{x-5}{4}-2x+1=\frac{x}{3}-\frac{2-x}{6}\)
<=> \(\frac{1}{4}x-\frac{5}{4}-2x+1=\frac{1}{3}x-\frac{1}{3}+\frac{1}{6}x\)
<=> \(-\frac{7}{4}x-\frac{1}{2}x=-\frac{1}{3}+\frac{1}{4}\)
<=> \(-\frac{9}{4}x=-\frac{1}{12}\)
<=> \(x=\frac{1}{27}\)
Vậy ...
b) ( x2 - 4 ) - ( x - 2 )( 3 - 2x ) = 0
<=> ( x - 2 )( x + 2 ) - ( x - 2 )( 3 - 2x ) = 0
<=> ( x - 2 )( x + 2 - 3 + 2x ) = 0
<=> ( x - 2 )( 3x - 1 ) = 0
<=> x = 2 hoặc x = 1/3
Vậy ...
a) \(\left(2x+1\right)\left(3x-2\right)=\left(2x+1\right)\left(5x-8\right)\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2\right)-\left(2x+1\right)\left(5x-8\right)=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2-5x+8\right)=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(6-2x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=0\\6-2x=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-0,5\\x=3\end{cases}}\)
Vậy...
b) \(ĐKXĐ:\) \(x\ne-2;\) \(x\ne4\)
\(\frac{3}{x+2}+\frac{2}{x-4}=0\)
\(\Leftrightarrow\)\(\frac{3\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Leftrightarrow\)\(\frac{3x-12+2x+4}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Leftrightarrow\)\(\frac{5x-8}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Rightarrow\)\(5x-8=0\)
\(\Leftrightarrow\)\(x=\frac{8}{5}\) (T/m đkxđ)
Vậy...
c) \(x^3+4x^2+4x+3=0\)
\(\Leftrightarrow\)\(x^3+3x^2+x^2+3x+x+3=0\)
\(\Leftrightarrow\)\(x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\)\(x+3=0\) (do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall x\))
\(\Leftrightarrow\)\(x=-3\)
Vậy...
a) điều kiện : x-1\(\ne0\)
\(\frac{1}{x-1}>\frac{1}{2}\Rightarrow\frac{1\cdot2}{\left(x-1\right)\cdot2}>\frac{1\left(x-1\right)}{2\left(x-1\right)}\Leftrightarrow2>x-1\Leftrightarrow-x>-1-2\Leftrightarrow-x>-3\)
\(\Leftrightarrow x< 3\)
b) \(\frac{2x+3}{-2}< \frac{3}{-2}\Leftrightarrow2x+3>3\Leftrightarrow2x>3-3\Leftrightarrow2x>0\Leftrightarrow x>0\)
c) điều kiện :\(x\ne0\)
\(\frac{2x-1}{x}< \frac{1+x}{x}\Leftrightarrow2x-1< 1+x\Leftrightarrow2x-x< 1+1\Leftrightarrow x< 2\)
2 phương này tương đường hay 2 phương trình riêng