\(\dfrac{x^2-4x}{x-1}\left(x+\dfrac{x-4}{x-1}\right)=5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 12 2018

ĐKXĐ: \(x\ne1\)

\(\dfrac{x^2-4x}{x-1}\left(x+\dfrac{x-4}{x-1}\right)=5\Leftrightarrow\dfrac{x^2-4x}{x-1}\left(\dfrac{x^2-4}{x-1}\right)=5\)

\(\Leftrightarrow\dfrac{x^2-4x}{x-1}\left(\dfrac{x^2-4x}{x-1}+4\right)=5\)

Đặt \(\dfrac{x^2-4x}{x-1}=a\) phương trình trở thành:

\(a\left(a+4\right)-5=0\Leftrightarrow a^2+4a-5=0\)

\(\Rightarrow\left[{}\begin{matrix}a=1\\a=-5\end{matrix}\right.\)

- Với \(a=1\Rightarrow\dfrac{x^2-4x}{x-1}=1\Leftrightarrow x^2-4x=x-1\)

\(\Leftrightarrow x^2-5x+1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{21}}{2}\\x=\dfrac{5-\sqrt{21}}{2}\end{matrix}\right.\)

- Với \(a=-5\Rightarrow\dfrac{x^2-4x}{x-1}=-5\Leftrightarrow x^2-4x=-5x+5\)

\(\Leftrightarrow x^2+x-5=0\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1-\sqrt{21}}{2}\\x=\dfrac{-1+\sqrt{21}}{2}\end{matrix}\right.\)

Vậy pt đã cho có 4 nghiệm ....

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

4 tháng 4 2017

a) 3(x2 + x)2 – 2(x2 + x) – 1 = 0. Đặt t = x2 + x, ta có:

3t2 – 2t – 1 = 0; t1 = 1, t2 =

Với t1 = 1, ta có: x2 + x = 1 hay x2 + x – 1 = 0, ∆ = 4 + 1 = 5, √∆ = √5

x1 = , x2 =

Với t2 = , ta có: x2 + x = hay 3x2 + 3x + 1 = 0:

Phương trình vô nghiệm, vì ∆ = 9 – 4 . 3 . 1 = -3 < 0

Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =

b) (x2 – 4x + 2)2 + x2 – 4x – 4 = 0

Đặt t = x2 – 4x + 2, ta có phương trình t2 + t – 6 = 0

Giải ra ta được t1 = 2, t2 = -3.

- Với t1 = 2 ta có: x2 – 4x + 2 = 2 hay x2 – 4x = 0. Suy ra x1 = 0, x2 = 4.

- Với t1 = -3, ta có: x2 – 4x + 2 = -3 hay x2 – 4x + 5 = 0.

Phương trình này vô nghiệm vì ∆ = (-4)2 – 4 . 1 . 5 = 16 – 20 = -4 < 0

Vậy phương trình đã cho có hai nghiệm: x1 = 0, x2 = 4.

c) x - √x = 5√x + 7 ⇔ x - 6√x – 7 = 0. Điều kiện: x ≥ 0. Đặt t = √x, t ≥ 0

Ta có: t2 – 6t – 7 = 0. Suy ra: t1 = -1 (loại), t2 = 7

Với t = 7, ta có: √x = 7. Suy ra x = 49.

Vậy phương trình đã cho có một nghiệm: x = 49

d) – 10 . = 3. Điều kiện: x ≠ -1, x ≠ 0

Đặt = t, ta có: = . Vậy ta có phương trình: t - – 3 = 0

hay: t2 – 3t – 10 = 0. Suy ra t1 = 5, t2 = -2.

- Với t1 = 5, ta có = 5 hay x = 5x + 5. Suy ra x =

- Với t2 = -2, ta có = -2 hay x = -2x – 2. Suy ra x = .

Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =



12 tháng 1 2019
https://i.imgur.com/NPx7OjZ.jpg
12 tháng 1 2019
https://i.imgur.com/cKHt1qr.jpg
22 tháng 6 2017

a) \(\dfrac{12}{x-1}-\dfrac{8}{x+1}=1\) \(\Leftrightarrow\) \(\dfrac{12\left(x+1\right)-8\left(x-1\right)}{x^2-1}=1\)

\(\Leftrightarrow\) \(\dfrac{12x+12-8x+8}{x^2-1}=1\) \(\Leftrightarrow\) \(\dfrac{4x+20}{x^2-1}=1\)

\(\Leftrightarrow\) \(x^2-1=4x+20\) \(\Leftrightarrow\) \(x^2-4x-21=0\)

giải pt ta có 2 nghiệm : \(x_1=7;x_2=-3\)

vậy phương trình có 2 nghiệm \(x=7;x=-3\)

b) \(\dfrac{16}{x-3}+\dfrac{30}{1-x}=3\) \(\Leftrightarrow\) \(\dfrac{16\left(1-x\right)+30\left(x-3\right)}{\left(x-3\right)\left(1-x\right)}=3\)

\(\Leftrightarrow\) \(\dfrac{16-16x+30x-90}{x-x^2-3+3x}=3\) \(\Leftrightarrow\) \(\dfrac{14x-74}{-x^2+4x-3}=3\)

\(\Leftrightarrow\) \(3\left(-x^2+4x-3\right)=14x-74\)

\(\Leftrightarrow\) \(-3x^2+12x-9=14x-74\)

\(\Leftrightarrow\) \(3x^2-2x-65=0\)

giải pt ta có 2 nghiệm : \(x_1=5;x_2=\dfrac{-13}{3}\)

vậy phương trình có 2 nghiệm \(x=5;x=\dfrac{-13}{3}\)

27 tháng 12 2018

c) ĐK: x\(\ne3,x\ne-2\)

\(\dfrac{x^2-3x+5}{\left(x-3\right)\left(x+2\right)}=\dfrac{1}{x-3}\Leftrightarrow\dfrac{x^2-3x+5}{\left(x-3\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-3\right)\left(x+2\right)}\Leftrightarrow x^2-3x+5=x+2\Leftrightarrow x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)

Vậy S={1}

d) ĐK: \(x\ne2,x\ne-4\)

\(\dfrac{2x}{x-2}-\dfrac{x}{x+4}=\dfrac{8x+8}{\left(x-2\right)\left(x+4\right)}\Leftrightarrow\dfrac{2x\left(x+4\right)}{\left(x-2\right)\left(x+4\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+4\right)}=\dfrac{8x+8}{\left(x-2\right)\left(x+4\right)}\Leftrightarrow\dfrac{2x^2+8x}{\left(x-2\right)\left(x+4\right)}-\dfrac{x^2-2x}{\left(x-2\right)\left(x+4\right)}=\dfrac{8x+8}{\left(x-2\right)\left(x+4\right)}\Leftrightarrow\dfrac{2x^2+8x-x^2+2x}{\left(x-2\right)\left(x+4\right)}=\dfrac{8x+8}{\left(x-2\right)\left(x+4\right)}\Leftrightarrow x^2+10x=8x+8\Leftrightarrow x^2+2x-8=0\Leftrightarrow x^2-2x+4x-8=0\Leftrightarrow x\left(x-2\right)+4\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=2\left(ktm\right)\\x=-4\left(ktm\right)\end{matrix}\right.\)

Vậy phương trình vô nghiệm

4 tháng 4 2017

a) + 2 = x(1 - x)

⇔ x2 – 9 + 6 = 3x – 3x2

⇔ 4x2 – 3x – 3 = 0; ∆ = 57

x1 = , x2 =

b) + 3 = . Điều kiện x ≠ 2, x ≠ 5.

(x + 2)(2 – x) + 3(x – 5)(2 – x) = 6(x – 5)

⇔ 4 – x23x2 + 21x – 30 = 6x – 30 ⇔ 4x2 – 15x – 4 = 0

∆ = 225 + 64 = 289, √∆ = 17

x1 = , x2 = 4

c) = . Điều kiện: x ≠ -1; x ≠ -2

Phương trình tương đương: 4(x + 2) = -x2 – x + 2

⇔ 4x + 8 = 2 – x2 – x

⇔ x2 + 5x + 6 = 0

Giải ra ta được: x1 = -2 không thỏa mãn điều kiện của ẩn nên phương trình chỉ có một nghiệm x = -3.



4 tháng 4 2017

a) + 2 = x(1 - x)

⇔ x2 – 9 + 6 = 3x – 3x2

⇔ 4x2 – 3x – 3 = 0; ∆ = 57

x1 = , x2 =

b) + 3 = . Điều kiện x ≠ 2, x ≠ 5.

(x + 2)(2 – x) + 3(x – 5)(2 – x) = 6(x – 5)

⇔ 4 – x23x2 + 21x – 30 = 6x – 30 ⇔ 4x2 – 15x – 4 = 0

∆ = 225 + 64 = 289, √∆ = 17

x1 = , x2 = 4

c) = . Điều kiện: x ≠ -1; x ≠ -2

Phương trình tương đương: 4(x + 2) = -x2 – x + 2

⇔ 4x + 8 = 2 – x2 – x

⇔ x2 + 5x + 6 = 0

Giải ra ta được: x1 = -2 không thỏa mãn điều kiện của ẩn nên phương trình chỉ có một nghiệm x = -3.

nhớ like nha

NV
1 tháng 3 2019

a/ \(\left(x+3\right)\left(3\left(x^2+1\right)^2+2\left(x+3\right)^2\right)=5\left(x^2+1\right)^3\)

\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2+2\left(x+3\right)^3-5\left(x^2+1\right)^3=0\)

\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2-3\left(x^2+1\right)^3+2\left(x+3\right)^3-2\left(x^2+1\right)^3=0\)

\(\Leftrightarrow3\left(x^2+1\right)^2\left(-x^2+x+2\right)+2\left(-x^2+x+2\right)\left(\left(x+3\right)^2+\left(x+3\right)\left(x^2+1\right)+\left(x^2+1\right)^2\right)=0\)

\(\Leftrightarrow\left(-x^2+x+2\right)\left[3\left(x^2+1\right)^2+2\left(x+3+\dfrac{x^2+1}{2}\right)^2+\dfrac{3\left(x^2+1\right)^2}{4}\right]=0\)

\(\Leftrightarrow-x^2+x+2=0\) (phần ngoặc phía sau luôn dương)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

NV
1 tháng 3 2019

b/ \(3\left(x^2+2x-1\right)^2-2\left(x^2+3x-1\right)^2+5\left(x^2+3x-1-\left(x^2+2x-1\right)\right)^2=0\)

Đặt \(\left\{{}\begin{matrix}a=x^2+2x-1\\b=x^2+3x-1\end{matrix}\right.\)

\(3a^2-2b^2+5\left(b-a\right)^2=0\Leftrightarrow8a^2+3b^2-10ab=0\)

\(\Leftrightarrow\left(4a-3b\right)\left(2a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}4a=3b\\2a=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2+2x-1\right)=3\left(x^2+3x-1\right)\\2\left(x^2+2x-1\right)=x^2+3x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)