K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

Ta có:\(\dfrac{x^2-10+15}{x^2-6x+15}=\dfrac{4x}{x^2-12x+15}\left(đkxđ:x\ne\sqrt{21}+6;-\sqrt{21}+6\right)\)

\(\Leftrightarrow\dfrac{x^2-6x+15-4x}{x^2-6x+15}=\dfrac{4x}{x^2-12x+15}\)

\(\Leftrightarrow1-\dfrac{4x}{x^2-6x+15}=\dfrac{4x}{x^2-12x+15}\)

\(\Leftrightarrow\dfrac{4x}{x^2-6x+15}+\dfrac{4x}{x^2-12x+15}=1\)

\(\Leftrightarrow\dfrac{4}{x-6+\dfrac{15}{x}}+\dfrac{4}{x-12+\dfrac{15}{x}}=1\)

Đặt \(x+\dfrac{15}{x}=t\)

PT\(\Leftrightarrow\dfrac{4}{t-6}+\dfrac{4}{t-12}=1\)

\(\Leftrightarrow4t-48+4t-24=t^2-18t+72\)

\(\Leftrightarrow8t-72=t^2-18t+72\)

\(\Leftrightarrow t^2-26t+144=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=18\\t=8\end{matrix}\right.\)

Thay vào từng trường hợp rồi tìm x

17 tháng 3 2018

\(\dfrac{x^2-10x+15}{x^2-6x+15}=\dfrac{4x}{x^2-12x+15}\)

đặt :\(x^2-6x+15=y\) ta đc:

\(\dfrac{y^2-4x}{y}=\dfrac{4x}{y^2-6x}\)

<=>\(\dfrac{\left(y^2-4x\right)\left(y^2-6x\right)}{y\left(y^2-6x\right)}=\dfrac{4xy}{y\left(y^2-6x\right)}\)

=>\(y^4-6xy^2-4xy^2+24x^2=4xy\)

<=>

28 tháng 11 2022

\(\Leftrightarrow\dfrac{2}{\left(x+1\right)\left(x+3\right)}+\dfrac{2}{\left(x+3\right)\left(x+5\right)}+\dfrac{2}{\left(x+5\right)\left(x+7\right)}+\dfrac{2}{\left(x+7\right)\left(x+9\right)}=\dfrac{2}{5}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+9}=\dfrac{2}{5}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+9}=\dfrac{2}{5}\)

\(\Leftrightarrow\dfrac{x+9-x-1}{\left(x+1\right)\left(x+9\right)}=\dfrac{2}{5}\)

=>2(x+1)(x+9)=5*8=40

=>x^2+9x+9=20

=>x^2+9x-11=0

hay \(x=\dfrac{-9\pm5\sqrt{5}}{2}\)

=>x^2+9x

Đặt \(x^2-6x+15=a,2x=b\)

\(PT\Leftrightarrow\left(a-2b\right)\left(a-3b\right)=2ab\)

\(\Leftrightarrow a^2-7ab+6b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-6b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=6b\end{cases}}\)

Đến đây đơn giản rồi nhé :))))

9 tháng 8 2017

PP chung ở cả 3 câu,nói ngắn gọn nhé:

Chứng mình x khác 0,hay nói cách khác x=0 không là nghiệm của phương trình.

Chia cả tử và mẫu cho x ,rồi giải bình thường bằng cách đặt ẩn phụ.

Vd ở câu a>>>4/(4x-8+7/x)+3/(4x-10+7/x)=1.Sau đó đặt 4x+7/x=a>>>4/(a-8)+3/(a-10)=1>>>giải bình thường,các câu sau tương tự

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

28 tháng 9 2021

h) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=2\\\dfrac{3}{x}-\dfrac{4}{y}=-1\end{matrix}\right.\)\(\left(1\right)\)\(\left(đk:x,y\ne0\right)\)

Đặt \(a=\dfrac{1}{x},b=\dfrac{1}{y}\)

\(\left(1\right)\Leftrightarrow\) \(\left\{{}\begin{matrix}a+b=2\\3a-4b=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3a+3b=6\\3a-4b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\7b=7\end{matrix}\right.\)\(\Leftrightarrow a=b=1\)

Thay a,b:

\(\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{y}=1\Leftrightarrow x=y=1\left(tm\right)\)

30 tháng 10 2018

b) \(\left(x-3\right)^2+3x-22=\sqrt{x^2-3x+7}\)

\(\Leftrightarrow x^2-6x+9+3x-22=\sqrt{x^2-3x+7}\)

\(\Leftrightarrow\left(x^2-3x+7\right)-\sqrt{x^2-3x+7}-20=0\)

Đặt \(\sqrt{x^2-3x+7}=t\left(t\ge0\right)\left(1\right)\)

\(\Rightarrow t^2-t-20=0\)

\(\Rightarrow x_1=5\left(TM\right);x_2=-4\left(KTM\right)\)

Thay t=5 vào (1), ta có :

\(\sqrt{x^2-3x+7}=5\)

\(\Leftrightarrow x^2-3x+7=25\)

\(\Leftrightarrow x^2-3x-18=0\)

\(\Rightarrow x_1=6;x_2=-3\)

vậy...

30 tháng 10 2018

xl bn tớ gửi nhầm

6 tháng 3 2021

\(x^4-9x^2+24x-16=\)\(0\)

\(\Leftrightarrow x^4-\left(9x^2-24x+16\right)=0\)

\(\Leftrightarrow x^4-\left(3x-4\right)^2=0\)

\(\Leftrightarrow\left(x^2+3x-4\right)\left(x^2-3x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-1\right)\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]=0\)

Vì \(\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)nên:

\(\left(x+4\right)\left(x-1\right)=0:\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]\)

\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)

Vậy phương trình có tập nghiệm \(S=\left\{1;-4\right\}\)

6 tháng 3 2021

\(x^4=6x^2+12x+\)\(8\)

\(\Leftrightarrow x^4-2x^2+1=4x^2+12x+9\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow|x^2-1|=|2x+3|\)\(|\)

xét các trường hợp:

- Trường hợp 1:

\(x^2-1=2x+3\)

\(\Leftrightarrow x^2-1-2x-3=0\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1\right)^2=5\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\sqrt{5}\\x-1=-\sqrt{5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}}\)

-Trường hợp 2:

\(x^2-1=-2x-3\)

\(\Leftrightarrow x^2-1+2x+3=0\)

\(\Leftrightarrow x^2+2x+2=0\)

\(\Leftrightarrow\left(x+1\right)^2+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=-1\left(vn\right)\)(vô nghiệm)

Vậy phương trình có tập nghiệm: \(S=\left\{1\pm\sqrt{5}\right\}\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2021

Lời giải:
PT \(\Leftrightarrow (\frac{x+1}{11}-1)-(\frac{2x-5}{15}-1)=(\frac{3x-47}{17}+1)-(\frac{4x-59}{19}+1)\)

\(\Leftrightarrow \frac{x-10}{11}-\frac{2(x-10)}{15}=\frac{3(x-10)}{17}-\frac{4(x-10)}{19}\)

\(\Leftrightarrow (x-10)(\frac{1}{11}+\frac{4}{19}-\frac{2}{15}-\frac{3}{17})=0\)

\(\Leftrightarrow x-10=0\Leftrightarrow x=10\)

 

25 tháng 6 2021

1)ĐK:`4x^2-12x+9>0`

`<=>(2n-3)^2>0`

`<=>2n-3 ne 0`

`<=>n ne 3/2`

`d)x^2-x+1`

`=(x-1/2)^2+3/4>0AAx`

`=>` bt xd `AAx in RR`

e)ĐK:`x^2-8x+15>0`

`<=>x^2-3x-5x+15>0`

`<=>x(x-3)-5(x-3)>0`

`<=>(x-3)(x-5)>0`

`TH1:` \(\begin{cases}x-3>0\\x-5>0\\\end{cases}\)

`<=>` \(\begin{cases}x>3\\x>5\\\end{cases}\)

`<=>x>5`

`TH2:` \(\begin{cases}x-3<0\\x-5<0\\\end{cases}\)

`<=>` \(\begin{cases}x<3\\x<5\\\end{cases}\)

`<=>x<3`

f)ĐK:`3x^2-7x+20>0`

`<=>x^2-2x+1+2x^2-5x+19>0`

`<=>(x-1)^2+2(x-5/2)^2+13/2>0` luôn đúng

25 tháng 6 2021

online 24/24 :>