Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: =>|x-2|+3=-5 hoặc |x-2|+3=5
=>|x-2|=2
=>x-2=2 hoặc x-2=-2
=>x=4 hoặc x=0
a: \(x< -9:\dfrac{3}{2}=-9\cdot\dfrac{2}{3}=-6\)
b: 2/3x>-2
hay x>-2:2/3=-3
c: \(2x>\dfrac{9}{5}-\dfrac{4}{5}=1\)
hay x>1/2
d: \(\Leftrightarrow x\cdot\dfrac{3}{5}>6-4=2\)
hay x>2:3/5=2x5/3=10/3
Giải phương trình sau:
\(\dfrac{x}{50}\) +\(\dfrac{x_{ }-1}{49}\)+\(\dfrac{x-2}{48}\)+\(\dfrac{x-3}{47}\)+\(\dfrac{x-150}{25}\)= 0
⇔ \(\dfrac{\left(x-50\right)+50}{50}\)+\(\dfrac{\left(x-50\right)+49}{49}\)+\(\dfrac{\left(x-50\right)+48}{48}\)+\(\dfrac{\left(x-50\right)-100}{25}\)= 0
⇔\(\dfrac{x-50}{50}\)+ 1 + \(\dfrac{x-50}{49}\)+1+\(\dfrac{x-50}{48}\)+1+\(\dfrac{x-50}{47}\)+1+\(\dfrac{x-50}{25}\)-4 = 0
⇔\(\dfrac{x-50}{50}\)+\(\dfrac{x-50}{49}\)+\(\dfrac{x-50}{48}\)+\(\dfrac{x-50}{47}\)+\(\dfrac{x-50}{25}\)= 0
⇔ (x - 50 ) ( \(\dfrac{1}{50}\)+ \(\dfrac{1}{49}\)+\(\dfrac{1}{48}\)+\(\dfrac{1}{47}\)+\(\dfrac{1}{25}\)) = 0
⇔ x-50 =\(\dfrac{0}{\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}}\)
⇔ x- 50 = 0
⇔ x = 50
vậy S = \(\left\{50\right\}\)
\(\dfrac{x+1}{94}+\dfrac{x+2}{93}+\dfrac{x+3}{92}=\dfrac{x+4}{91}+\dfrac{x+5}{90}+\dfrac{x+6}{89}\)
\(\Rightarrow\dfrac{x+1}{94}+1+\dfrac{x+2}{93}+1+\dfrac{x+3}{92}+1=\dfrac{x+4}{91}+1+\dfrac{x+5}{90}+1+\dfrac{x+6}{89}+1\)
\(\Rightarrow\dfrac{x+95}{94}+\dfrac{x+95}{93}+\dfrac{x+95}{92}=\dfrac{x+95}{91}+\dfrac{x+95}{90}+\dfrac{x+95}{89}\)
\(\Rightarrow\dfrac{x+95}{94}+\dfrac{x+95}{93}+\dfrac{x+95}{92}-\dfrac{x+95}{91}-\dfrac{x+95}{90}-\dfrac{x+95}{89}=0\)
\(\Rightarrow\left(x+95\right)\left(\dfrac{1}{94}+\dfrac{1}{93}+\dfrac{1}{92}-\dfrac{1}{91}-\dfrac{1}{90}-\dfrac{1}{89}\right)=0\)
Vì \(\dfrac{1}{94}+\dfrac{1}{93}+\dfrac{1}{92}-\dfrac{1}{91}-\dfrac{1}{90}-\dfrac{1}{89}\ne0\) nên \(x+95=0\Leftrightarrow x=-95\)
Mk làm luôn nhé , không chép lại đề đâu !!! Ahihi
\(\dfrac{x+1}{94}+1+\dfrac{x+2}{93}+1+\dfrac{x+3}{92}+1=\dfrac{x+4}{91}+1+\dfrac{x+5}{90}+1+\dfrac{x+6}{89}+1\)⇔\(\dfrac{x+95}{94}+\dfrac{x+95}{93}+\dfrac{x+95}{92}-\dfrac{x+95}{91}-\dfrac{x+95}{90}-\dfrac{x+95}{89}=0\)
⇔ \(\left(x+95\right)\)\(\left(\dfrac{1}{94}+\dfrac{1}{93}+\dfrac{1}{92}-\dfrac{1}{91}-\dfrac{1}{90}-\dfrac{1}{89}\right)\) = 0
⇔\(x+95=0\)
⇔ \(x=-95\)
Vậy , ......
\(\dfrac{x+1}{2009}+\dfrac{x+2}{2008}=\dfrac{x+2007}{3}+\dfrac{x+2006}{4}\)
\(\Leftrightarrow\dfrac{x+1}{2009}+1+\dfrac{x+2}{2008}+1=\dfrac{x+2007}{3}+1+\dfrac{x+2006}{4}+1\)
\(\Leftrightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}=\dfrac{x+2010}{3}+\dfrac{x+2010}{4}\)
\(\Rightarrow x+2010=0\)
\(\Rightarrow x=-2010\)
Vậy pt có nghiệm duy nhất \(x=-2010\)
a.
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
\(\Leftrightarrow\left(4x^2+8x+3\right)\left(x^2+2x+1\right)=18\)
Đặt \(t=x^2+2x+1=\left(x+1\right)^2\left(t\ge0\right)\)
\(\Rightarrow\left(4t-1\right)\cdot t=18\)
\(\Leftrightarrow\left(2t\right)^2-2\cdot2t\cdot\dfrac{1}{4}+\dfrac{1}{16}=\dfrac{289}{16}\)
\(\Leftrightarrow\left(2t-\dfrac{1}{4}\right)^2=\dfrac{289}{16}\Leftrightarrow\left(t-\dfrac{1}{8}\right)^2=\dfrac{289}{64}\)
\(\Leftrightarrow\left[{}\begin{matrix}t-\dfrac{1}{8}=\dfrac{17}{8}\\t-\dfrac{1}{8}=-\dfrac{17}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{9}{4}\\t=-2\left(loai\right)\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2=\dfrac{9}{4}\Leftrightarrow\left[{}\begin{matrix}x+1=\dfrac{3}{2}\\x+1=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{5}{2};\dfrac{1}{2}\right\}\)
b.
Ta có:
- \(x^2+4x+3=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)
- \(x^2+11x+24=x^2+3x+8x+24=x\left(x+3\right)+8\left(x+3\right)=\left(x+3\right)\left(x+8\right)\)
- \(x^2+18x+80=x^2+8x+10x+80=x\left(x+8\right)+10\left(x+8\right)=\left(x+8\right)\left(x+10\right)\)
Thay vào phương trình, ta được:
\(\dfrac{2}{\left(x+1\right)\left(x+3\right)}+\dfrac{5}{\left(x+3\right)\left(x+8\right)}+\dfrac{2}{\left(x+8\right)\left(x+10\right)}=\dfrac{9}{25}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+8}+\dfrac{1}{x+8}-\dfrac{1}{x+10}=\dfrac{9}{25}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+10}=\dfrac{9}{25}\)
\(\Leftrightarrow\dfrac{x+10-\left(x+1\right)}{\left(x+1\right)\left(x+10\right)}=\dfrac{9}{25}\Leftrightarrow\dfrac{9}{\left(x+1\right)\left(x+10\right)}=\dfrac{9}{25}\)
\(\Leftrightarrow\left(x+1\right)\left(x+10\right)=25\)
\(\Leftrightarrow x^2+11x+\dfrac{121}{4}=\dfrac{181}{4}\)
\(\Leftrightarrow\left(x+\dfrac{11}{2}\right)^2=\dfrac{181}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{11}{2}=\dfrac{\sqrt{181}}{2}\\x+\dfrac{11}{2}=-\dfrac{\sqrt{181}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11+\sqrt{181}}{2}\\x=\dfrac{-11-\sqrt{181}}{2}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{-11+\sqrt{181}}{2};\dfrac{-11-\sqrt{181}}{2}\right\}\)
a) 0,25x+1,5=0
=> x = (0 - 1,5) : 0,25 = -1,5 : 0,25 = -6
Vậy x = -6.
b) 6,36−5,3x=0
=> x = (0 + 6,36) : 5,3 = 6,36 : 5,3 =\(\dfrac{6}{5}=1,2\)
Vậy x = 1,2.
c) 43x−56=12
=> x = \(\left(\dfrac{1}{2}+\dfrac{5}{6}\right)\): \(\dfrac{4}{3}\) = \(\dfrac{4}{3}:\dfrac{4}{3}=1\)
Vậy x = 1.
d) −59x+1=23x−10
=> \(\dfrac{-5}{9}x-\dfrac{2}{3}x=\dfrac{-11}{9}x=-10-1=-11\)
=> \(x=-11:\dfrac{-11}{9}=9\)
Vậy x = 9.
a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)
\(\Leftrightarrow\dfrac{4x+\left(2x-1\right)}{6}=\dfrac{24-2x}{6}\)
\(\Leftrightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow6x+2x=24+1\)
\(\Leftrightarrow8x=25\)
\(\Leftrightarrow x=\dfrac{25}{8}\)
Vậy phương trình có một nghiệm là x = \(\dfrac{25}{8}\)
b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)
\(\Leftrightarrow\dfrac{6\left(x-1\right)+3\left(x-1\right)}{12}=\dfrac{12-8\left(x-1\right)}{12}\)
\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)
\(\Leftrightarrow9\left(x-1\right)+8\left(x-1\right)=12\)
\(\Leftrightarrow17\left(x-1\right)=12\)
\(\Leftrightarrow17x-17=12\)
\(17x=12+17\)
\(\Leftrightarrow17x=29\)
\(\Leftrightarrow x=\dfrac{29}{17}\)
Vậy phương trình có một nghiệm là x = \(\dfrac{29}{17}\)
c) \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)
\(\Leftrightarrow\dfrac{2-x}{2001}-\dfrac{1-x}{2002}-\dfrac{\left(-x\right)}{2003}=1\)
\(\Leftrightarrow\dfrac{2-x}{2001}+1-\dfrac{1-x}{2002}-1-\dfrac{\left(-x\right)}{2003}-1=1+1-1-1\)
\(\Leftrightarrow\dfrac{2-x}{2001}+\dfrac{2001}{2001}-\dfrac{1-x}{2002}-\dfrac{2002}{2002}-\dfrac{\left(-x\right)}{2003}-\dfrac{2003}{2003}=0\)
\(\Leftrightarrow\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)
\(\Leftrightarrow\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow2003-x=0\)
\(\Leftrightarrow-x=-2003\)
\(\Leftrightarrow x=2003\)
Vậy phương trình có một nghiệm là x = 2003
a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)
\(\Leftrightarrow\dfrac{4x}{6}+\dfrac{2x-1}{6}=\dfrac{24}{6}-\dfrac{2x}{6}\)
\(\Leftrightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow4x+2x+2x=1+24\)
\(\Leftrightarrow8x=25\)
\(\Leftrightarrow x=\dfrac{25}{8}\)
Vậy S={\(\dfrac{25}{8}\)}
b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)
\(\Leftrightarrow\dfrac{6\left(x-1\right)}{12}+\dfrac{3\left(x-1\right)}{12}=\dfrac{12}{12}-\dfrac{8\left(x-1\right)}{12}\)
\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)
\(\Leftrightarrow6x-6+3x-3=12-8x+8\)
\(\Leftrightarrow6x+3x+8x=6+3+12+8\)
\(\Leftrightarrow17x=29\)
\(\Leftrightarrow x=\dfrac{29}{17}\)
Vậy S={\(\dfrac{29}{17}\)}
\(\Leftrightarrow\dfrac{16}{x+4}+\dfrac{16}{x-4}=\dfrac{5}{3}\)
=>\(\dfrac{16x-64+16x+64}{x^2-16}=\dfrac{5}{3}\)
=>5(x^2-16)=3*32x=96x
=>5x^2-96x-80=0
=>x=20 hoặc x=-4/5
nếu là giải PT bằng cách quy đồng:
25x2 + 480 - 400 = 0
làm sao để phan tích ra ạ.