K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

(x + 2)(x - 2)(x2 - 10) = 0 => x + 2 = 0 hay x - 2 = 0 hoặc x2 - 10 = 0 =>\(x\in\left\{-\sqrt{10};-2;2;\sqrt{10}\right\}\)

19 tháng 5 2016

x2(x+2)2+4x2=12(x+2)2

=>x2(x+2)2+4x2-12(x+2)2=0

VT=(x2-2x-4)(x2+6x+12)

pt trở thành (x2-2x-4)(x2+6x+12)=0

=>x2-2x-4=0 hoặc x2+6x+12=0

Th1:x2-2x-4=0

denta:(-2)2-(-4(1.4))=20

x1:(2+\(\sqrt{20}\)):2=1+\(\sqrt{5}\)

x2:(2-\(\sqrt{20}\)):2=\(\sqrt{5}\)+1

Th2:x2+6x+12=0

denta:62-4(1.12)=-12

=>\(\Delta< 0\)

=>vô nghiệm

vậy pt có nghiệm là 1-\(\sqrt{5}\)và \(\sqrt{5}\)+1

a: Đặt \(a=x^2+x\)

Phương trình ban đầu sẽ trở thành \(a^2+4a-12=0\)

=>\(a^2+6a-2a-12=0\)

=>a(a+6)-2(a+6)=0

=>(a+6)(a-2)=0

=>\(\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)

=>\(x^2+x-2=0\)(Vì \(x^2+x+6=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\forall x\))

=>\(\left(x+2\right)\left(x-1\right)=0\)

=>\(\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

b:

Sửa đề: \(\left(x^2+2x+3\right)^2-9\left(x^2+2x+3\right)+18=0\)

Đặt \(b=x^2+2x+3\)

Phương trình ban đầu sẽ trở thành \(b^2-9b+18=0\)

=>\(b^2-3b-6b+18=0\)

=>b(b-3)-6(b-3)=0

=>(b-3)(b-6)=0

=>\(\left(x^2+2x+3-3\right)\left(x^2+2x+3-6\right)=0\)

=>\(\left(x^2+2x\right)\left(x^2+2x-3\right)=0\)

=>\(x\left(x+2\right)\left(x+3\right)\left(x-1\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x+2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=-3\\x=1\end{matrix}\right.\)

c: \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

=>\(\left(x^2-4\right)\left(x^2-10\right)=72\)

=>\(x^4-14x^2+40-72=0\)

=>\(x^4-14x^2-32=0\)

=>\(\left(x^2-16\right)\left(x^2+2\right)=0\)

=>\(x^2-16=0\)(do x2+2>=2>0 với mọi x)

=>x2=16

=>x=4 hoặc x=-4

26 tháng 2 2020

\(x^2+\frac{1}{x^2}+16y^2+\frac{1}{y^2}-10=0\)

<=>\(\left(x^2-2+\frac{1}{x^2}\right)+\left(16y^2-8+\frac{1}{y^2}\right)=0\)

<=>\(\left[x^2-2\cdot x\cdot\frac{1}{x}+\left(\frac{1}{x}\right)^2\right]+\left[\left(4y\right)^2-2\cdot4y\cdot\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]=0\)

<=>\(\left(x-\frac{1}{x}\right)^2+\left(4y-\frac{1}{y}\right)^2=0\)

Mà \(\left(x-\frac{1}{x}\right)^2;\left(4y-\frac{1}{y}\right)^2>hoac=0\)

=>\(\hept{\begin{cases}\left(x-\frac{1}{x}\right)^2=0\\\left(4y-\frac{1}{y}\right)^2=0\end{cases}}\)

<=>\(\hept{\begin{cases}x-\frac{1}{x}=0\\4y-\frac{1}{y}=0\end{cases}}\)

đoạn này bạn tự giải tiếp

Vậy x=1 và y=1/2

27 tháng 2 2020

Sorry

Ở trên mình KL thiếu

Còn có x= -1;y=-1/2

23 tháng 4 2018

\(x^2-3x+2+\left|x-1\right|=0\)

\(\Leftrightarrow x^2-2x-x+2+\left|x-1\right|=0\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)+\left|x-1\right|=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)+\left|x-1\right|=0\)

\(\Leftrightarrow\left|x-1\right|=\left(x-1\right)\left(2-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\left(x-1\right)\left(2-x\right)\left(x\ge1\right)\\x-1=\left(x-1\right)\left(x-2\right)\left(x< 1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(2-x-1\right)=0\\\left(x-1\right)\left(x-2-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=1\left(loai\right)\\x=3\left(loai\right)\end{matrix}\right.\end{matrix}\right.\)

17 tháng 7 2019

-x3 + x2 + 4 = 0

<=> -(x - 2)(x2 + x + 2) = 0

<=> x - 2 = 0

       x = 0 + 2

       x = 2

Mà vì x2 + x + 2 # 0 

=> x = 2

30 tháng 1 2016

Cac ban giup mk di mk dang can ngay bay gio .