Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em thử liên hợp nhé;) không thì bình phương lên cho ra phương trình bậc 4 rồi mò cũng được:P
ĐK: \(x\le-\frac{\sqrt{2}}{2}\text{hoặc }x\ge\frac{\sqrt{2}}{2}\)
PT \(\Leftrightarrow10x^2+3x-6=\left(3x+1\right).2\sqrt{2x^2-1}\) (nhân hai vế với 2)
Bớt cả hai vế của pt cho \(3x^2+7x+2\) , pt trở thành:
\(7x^2-4x-8=\left(3x+1\right).2\sqrt{2x^2-1}-\left(3x^2+7x+2\right)\)
\(\Leftrightarrow7x^2-4x-8=\left(3x+1\right)\sqrt{8x^2-4}-\left(3x+1\right)\left(x+2\right)\)
\(\Leftrightarrow7x^2-4x-8=\left(3x+1\right)\left[\sqrt{8x^2-4}-\left(x+2\right)\right]\)
Nhân liên hợp ta có:
\(PT\Leftrightarrow7x^2-4x-8=\left(3x+1\right)\left[\frac{7x^2-4x-8}{\sqrt{8x^2-4}+x+2}\right]\)
\(\Leftrightarrow\left(7x^2-4x-8\right)\left[\frac{\left(3x+1\right)}{\sqrt{8x^2-4}+x+2}-1\right]=0\)
Giải cái ngoặc nhỏ được \(\left[{}\begin{matrix}x=\frac{2+2\sqrt{15}}{7}\left(TM\right)\\x=\frac{2-2\sqrt{15}}{7}\left(TM\right)\end{matrix}\right.\)
Giải cái ngoặc to \(\Leftrightarrow3x+1=\sqrt{8x^2-4}+x+2\Leftrightarrow2x-1=\sqrt{8x^2-4}\)
Do VP >=0 nên VT >=0 do đó \(x\ge\frac{1}{2}\) . Bình phương hai vế, pt
\(\Leftrightarrow4x^2-4x+1=8x^2-4\)
\(\Leftrightarrow4x^2+4x-5=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1+\sqrt{6}}{2}\left(TM\right)\\x=\frac{-1-\sqrt{6}}{2}\left(KTM\right)\end{matrix}\right.\)
Vậy...
Điều kiện tự làm nhé:
Đặt \(\sqrt{2x-1}=t\)
\(\Leftrightarrow\left(3x+1\right)\sqrt{2x^2-1}=2\left(2x^2-1\right)+x^2+\frac{3x}{2}-1\)
\(\Leftrightarrow\left(3x+1\right)t=2t^2+\frac{3x}{2}-1+x^2\)
\(\Leftrightarrow-4t^2+6tx+2t-2x^2-3x+2=0\)
\(\Leftrightarrow\left(2t-x-2\right)\left(2x-2t-1\right)=0\)
Tới đây thì đơn giản rồi nhé
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
ĐKXĐ \(\left|x\right|\ge\frac{1}{\sqrt{2}}\)
Đặt \(\sqrt{2x^2-1}=t\ge0\)
<=> \(\left(3x+1\right)t=2t^2+x^2+\frac{3}{2}x-1\)
<=> \(2t^2-\left(3x+1\right)t+x^2+\frac{3}{2}x-1=0\)
\(\Delta_t=\left(x-3\right)^2\)
\(\Rightarrow\orbr{\begin{cases}t=\frac{2x-1}{2}\\t=\frac{x+2}{2}\end{cases}}\)
Phần còn lại bạn tự giải nhé
Cách khác, bình phương cũng ra nhé
Em giải cho chị bên h o c 2 4 rồi mà?
Link: Câu hỏi của Phạm Thị Thùy Linh (không biết admin đã fix lỗi ko dán link h o c 2 4 vào chưa, nếu chưa thì ib, em gửi full link)