\(2\sqrt[3]{2x-1}-\sqrt[3]{3x-2}=1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

Đặt:

\(\hept{\begin{cases}u=\sqrt[3]{2x-1}\\v=\sqrt[3]{3x-2}\end{cases}}\)   Thì ta có hệ phương trình:  \(\hept{\begin{cases}2u-v=1\\3u^3-2v^3=1\end{cases}\Leftrightarrow\hept{\begin{cases}v=2u-1\\3u^3-2\left(2u-1\right)^3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}v=2u-1\\3u^3-2\left(8u^3-12u^2+6u-1\right)=1\end{cases}.}}\) 

\(\hept{\begin{cases}v=2u-1\\13u^3-24u^2+12u-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}v=2u-1\\13u^2\left(u-1\right)-11u\left(u-1\right)+\left(u-1\right)=0\end{cases}\Leftrightarrow}}\) 

\(\Leftrightarrow\hept{\begin{cases}v=2u-1\\\left(u-1\right)\left(13u^2-11u+1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}u_1=1\\u_2=\frac{11-\sqrt{69}}{26}\\u_3=\frac{11+\sqrt{69}}{26}\end{cases}.}}\)   Không cần phải tính v , ta tìm được các nghiệm của phương trình:

- Với u = 1 :   \(\sqrt[3]{2x-1}=1\Leftrightarrow2x-1=1\Leftrightarrow2x=2\Leftrightarrow x=1.\) 

- Với u2 :  \(u_2=\frac{11-\sqrt{69}}{26}\Rightarrow\sqrt[3]{2x-1}=u_2\Leftrightarrow2x-1=u_2^3\Leftrightarrow x=\frac{u_2^3+1}{2}.\)   Viết u2 cho gọn 

- Với u3 :    \(u_3=\frac{11+\sqrt{69}}{26}\Rightarrow\sqrt[3]{2x-1}=u_3\Leftrightarrow2x-1=u_3^3\Leftrightarrow x=\frac{u_3^3+1}{2}.\)  Viết u3 cho gọn

Trả lời: Phương trình có 3 nghiệm (Đã nêu trên)

29 tháng 7 2018

1) \(\sqrt{\text{x^2− 20x + 100 }}=10\)

<=> \(\sqrt{\left(x-10\right)^2}=10\)

<=> \(\left|x-10\right|=10\)

=> \(\left[{}\begin{matrix}x-10=10\\x-10=-10\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=10+10\\x=\left(-10\right)+10\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=20\\x=0\end{matrix}\right.\)

Vậy S = \(\left\{20;0\right\}\)

2) \(\sqrt{x +2\sqrt{x}+1}=6\)

<=> \(\sqrt{\left(\sqrt{x^2}+2.\sqrt{x}.1+1^2\right)}=6\)

<=> \(\sqrt{\left(\sqrt{x}+1\right)^2}=6\)

<=> \(\left|\sqrt{x}+1\right|=6\)

=> \(\left[{}\begin{matrix}\sqrt{x}+1=6\\\sqrt{x}+1=-6\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{x}=6-1=5\\\sqrt{x}=\left(-6\right)-1=-7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=25\\x=-49\left(loai\right)\end{matrix}\right.\)

Vậy S = \(\left\{25\right\}\)

3) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)

<=> \(\sqrt{\left(x-3\right)^2}=\sqrt{\sqrt{3^2}+2.\sqrt{3}.1+1^2}\)

<=> \(\left|x-3\right|=\sqrt{\left(\sqrt{3}+1\right)^2}\)

<=> \(\left|x-3\right|=\sqrt{3}+1\)

=> \(\left[{}\begin{matrix}x-3=\sqrt{3}+1\\x-3=-\left(\sqrt{3}+1\right)\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\sqrt{3}+4\\x=-\sqrt{3}+2\end{matrix}\right.\)

Vậy S = \(\left\{\sqrt{3}+4;-\sqrt{3}+2\right\}\)

29 tháng 7 2018

4) \(\sqrt{3x+2\sqrt{3x}+1}=5\)

<=> \(\sqrt{\sqrt{3x}^2+2.\sqrt{3x}.1+1^2}=5\)

<=> \(\sqrt{\left(\sqrt{3x}+1\right)^2}=5\)

<=> \(\left|\sqrt{3x}+1\right|=5\)

=> \(\left[{}\begin{matrix}\sqrt{3x}+1=5\\\sqrt{3x}+1=-5\end{matrix}\right.\)=> \(\left[{}\begin{matrix}\sqrt{3x}=5-1=4\\\sqrt{3x}=\left(-5\right)-1=-6\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3x=16\\3x=-6\left(loai\right)\end{matrix}\right.\)=> x = \(\dfrac{16}{3}\) Vậy S = \(\left\{\dfrac{16}{3}\right\}\)

5) \(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}\)

<=> \(\sqrt{\left(x-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

<=> \(\left|x-\sqrt{3}\right|=\sqrt{3}-1\)

<=> \(\left[{}\begin{matrix}x-\sqrt{3}=\sqrt{3}-1\\x-\sqrt{3}=-\left(\sqrt{3}-1\right)\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=-1\\x=-2\sqrt{3}+1\end{matrix}\right.\)

Vậy S = \(\left\{-1;-2\sqrt{3}+1\right\}\)

6) \(\sqrt{6x+4\sqrt{6x}+4}=7\)

<=> \(\sqrt{\sqrt{6x}^2+2.\sqrt{6x}.2+2^2}=7\)

<=> \(\sqrt{\left(\sqrt{6}+2\right)^2}=7\)

<=> \(\left|\sqrt{6x}+2\right|=7\)

=> \(\left[{}\begin{matrix}\sqrt{6x}+2=7\\\sqrt{6x}+2=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{6x}=7-2=5\\\sqrt{6x}=\left(-7\right)-2=-9\left(loai\right)\end{matrix}\right.\)

=> \(\sqrt{6x}=5=>6x=25=>x=\dfrac{25}{6}\)

22 tháng 6 2017

Ta có: 

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)

\(=\sqrt{\left(3x^2+6x+3\right)+9}+\sqrt{\left(5x^4-10x^2+5\right)+4}\)

\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\left(1\right)\)

Ta lại có:

\(-2x^2-4x+3=-2\left(x+1\right)^2+5\le5\left(2\right)\)

Từ (1) và (2) dấu = xảy ra khi \(x=-1\)

22 tháng 6 2017

1) Bình phương 2 vế của pt, ta được:

\(x^2-4x+9=9\)

<=> \(x^2-4x=0\)

<=>x(x-4) = 0

<=>\(\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

2) Bình phương 2 vế của pt được:

\(x^2-2x-3=4x^2+12x+9\)

\(-3x^2-14x-12=0\)

Áp dụng công thức nghiệm, giải được x

22 tháng 6 2017

Cái đó mình biết làm rồi bạn giúp mình tìm điều kiện nha....

18 tháng 6 2019

\(2x^3-x^2+\sqrt[3]{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}.\)

\(\Leftrightarrow\left(2x^3-3x+1\right)-\left(x^2+2\right)+\sqrt[3]{2x^2-3x+1}-\sqrt[3]{x^2+2}=0\)(*)

Đặt \(\sqrt[3]{2x^3-3x+1}=a\Rightarrow2x^3-3x+1=a^3\)\(\sqrt[3]{x^2+2}=b\Rightarrow b^3=x^2+2\)

Khi đó: (*) \(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Rightarrow a-b=0\)( Vì: \(a^2+ab+b^2+1=\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+1>0\))

\(\Leftrightarrow a=b\)hay \(\sqrt[3]{2x^3-3x+1}=\sqrt[3]{x^2+2}\)

\(\Leftrightarrow2x^3-3x+1=x^2+2\Leftrightarrow\left(2x^3+x^2\right)-\left(2x^2+x\right)-\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x^2-x-1\right)=0\Leftrightarrow\orbr{\begin{cases}2x+1=0\left(1\right)\\x^2-x-1=0\left(2\right)\end{cases}}\)

Giải (1)ta được \(x=-\frac{1}{2}\)

Giải (2) ta có: \(x^2-x-1=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{\sqrt{5}}{2}\\x-\frac{1}{2}=-\frac{\sqrt{5}}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{-\sqrt{5}+1}{2}\end{cases}}\)

Vậy tập nghiệm của phương trình đã cho là: \(S=\left\{-\frac{1}{2};\frac{\sqrt{5}+1}{2};\frac{-\sqrt{5}+1}{2}\right\}.\)

7 tháng 8 2017

giúp mk bài này với

7 tháng 8 2017

câu 2 có thể là am-gm 2016 số 

17 tháng 9 2018

\(\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}\)

\(\Leftrightarrow\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\)

\(\Leftrightarrow x+3+4x-4\sqrt{x+3}.\sqrt{x}=2x+2+3x+1-2\sqrt{2x+2}.\sqrt{3x+1}\)

\(\Leftrightarrow2\sqrt{x+3}.\sqrt{x}=\sqrt{2x+2}.\sqrt{3x+1}\)

\(\Leftrightarrow4\left(x^2+3x\right)=6x^2+8x+2\)

\(\Leftrightarrow4\left(x^2+3x\right)=6x^2+8x+2\)

\(\Leftrightarrow x=1\)

23 tháng 8 2019

Bổ sung tiếp bài của dưới

\(4\left(x^2+3x\right)-6x^2-8x-2=0\)

\(\Rightarrow4x^2-12x-6x^2-8x-2=0\)

\(\Rightarrow-2x^2+4x-2=\left(-2\right)\left(x^2-2x+1\right)=0\)

\(\Rightarrow-2\left(x-1\right)^2=0\Leftrightarrow x=1\)

12 tháng 8 2017

đăng ít một thôi bạn

12 tháng 8 2017

Bỏ câu c,d đi ạ