\(\sqrt{43-x}=x-1\).

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2022

\(ĐK:x\le43\)

\(\sqrt{43-x}=x-1\)

\(\Leftrightarrow\left(\sqrt{43-x}\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow43-x=x^2-2x+1\)

\(\Leftrightarrow x^2-x-42=0\)

\(\Delta=\left(-1\right)^2-4.\left(-42\right)=1+168=169>0\)

\(\rightarrow\left\{{}\begin{matrix}x_1=\dfrac{1+\sqrt{169}}{2}=7\left(tm\right)\\x_2=\dfrac{1-\sqrt{169}}{2}=-6\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{7;-6\right\}\)

1 tháng 5 2022

\(\sqrt{43-x}=x-1\left(đk:x\le43\right)\)

\(\Leftrightarrow\left|43-x\right|=\left(x-1\right)^2\)

\(\Leftrightarrow43-x=x^2-2x+1\)

\(\Leftrightarrow x^2-x-42=0\)

\(\Delta=\left(-1\right)^2-4.\left(-42\right)=169>0\)

Do \(\Delta\) > 0 nên pt có 2 nghiệm phân biện:

\(x_1=\dfrac{1+\sqrt{169}}{2}=7\left(TM\right)\)

\(x_2=\dfrac{1-\sqrt{169}}{2}=-6\left(TM\right)\)

13 tháng 3 2021

a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)

\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)

13 tháng 3 2021

a') (tiếp)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)

Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)

Với mọi \(x\ge4\), ta có:

\(\sqrt{3x+1}>0\)\(\sqrt{x-4}\ge0\)

\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)

\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)

Do đó phương trình (1) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

17 tháng 7 2017

điêu sai rồi

17 tháng 7 2017

x = -3 nha bạn

24 tháng 8 2020

Bg (x thuộc Z đc không ?)

\(\sqrt{43-x}=x-1\)

=> 43 - x = (x - 1)2 

=> 43 - x = x2 - 2x + 1

=> 43 = x2 - 2x + 1 + x

=> 42 = x2 - 2x + x

=> 42 = x2 - (2x - x)

=> 42 = x2 - x

=> 42 = x.(x - 1)

=> 7.6 = -6.(-7) = x.(x - 1)

Vậy x = 7 hoặc x = -6

24 tháng 8 2020

Nhầm rồi, em xin lỗi ạ:

Kết quả là 7 thôi ạ, 

Vì khi rút gọn x.(x - 1) thì phải dương

21 tháng 7 2021

ĐKXĐ: \(\hept{\begin{cases}x\ne-1\\\frac{3x-2}{x+1}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-1\\\orbr{\begin{cases}x\ge\frac{3}{2}\\x\le-1\end{cases}}\end{cases}}}\)

Khi đó: \(\sqrt{\frac{3x-2}{x+1}}=3\)

\(\Leftrightarrow\frac{3x-2}{x+1}=9\)

\(\Leftrightarrow9x+9=3x-2\)

\(\Leftrightarrow6x=-11\)

\(\Leftrightarrow x=\frac{-11}{6}\)(T/m ĐKXĐ)

21 tháng 7 2021

ĐKXĐ: \(\hept{\begin{cases}x\ne-1\\x\ge\frac{3}{2}hoặcx\le-1\end{cases}}\)

10 tháng 5 2019

ĐKXĐ \(x+2\ne0\)và \(5-x\ne0\)

<=> \(x\ne-2\)và \(x\ne5\)

b)\(\sqrt{4x^2-16+16}=6\)<=> \(\sqrt{2^2\left(x^2-2\cdot x\cdot2+2^2\right)}=6\)<=> \(2\sqrt{\left(x-2\right)^2}=6\)<=> \(|x-2|=3\)

Với \(x-2>0\)<=> \(x>2\)

=> \(|x-2|=x-2\)

Phương trình trở thành \(x-2=3\)<=> \(x=5\)(thỏa)

Với \(x-2< 0\)<=> \(x< 2\)

=> \(|x-2|=-\left(x-2\right)=2-x\)

Phương trình trở thành \(2-x=3\)<=> \(-x=1\)<=> \(x=-1\)(thỏa)

Vậy nghiệm của phương trình là\(x=5\)và\(x=-1\)