K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 5 2023

\(\sqrt{x^2+3x-2}=\sqrt{1+x}\)

\(\Leftrightarrow\left\{{}\begin{matrix}1+x\ge0\\x^2+3x-2=1+x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\left[{}\begin{matrix}x=1\\x=-3\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x=1\)

15 tháng 11 2019

Em trục căn thức:

\(\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\)

<=> \(\frac{-3x+3}{\sqrt{x+3}+2\sqrt{x}}=\frac{-x+1}{\sqrt{2x+2}+\sqrt{3x+1}}\)

=> nhân tử chung là -x + 1 . Tự làm tiếp nhé!

28 tháng 12 2020

làm như cô thì vẫn cần phải đánh giá rất khó chịu nhé

\(\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\left(ĐKXĐ:x\ge0\right)\)

\(< =>\sqrt{x+3}-\sqrt{2x+2}+\sqrt{3x+1}-2\sqrt{x}=0\)

\(< =>\frac{\sqrt{x+3}^2-\sqrt{2x+2}^2}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{\sqrt{3x+1}^2-4\sqrt{x}^2}{\sqrt{3x+1}+2\sqrt{x}}=0\)

\(< =>\frac{x+3-2x-2}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{3x+1-4x}{\sqrt{3x+1}+2\sqrt{x}}=0\)

\(< =>\frac{1-x}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{1-x}{\sqrt{3x+1}+2\sqrt{x}}=0\)

\(< =>\left(1-x\right)\left(\frac{1}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{1}{\sqrt{3x+1}+2\sqrt{x}}\right)=0< =>x=1\)

NV
2 tháng 11 2021

ĐKXĐ: \(\left[{}\begin{matrix}x\ge0\\x\le-3\end{matrix}\right.\)

\(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)

\(\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)

\(\Leftrightarrow x^2+3x+3\sqrt{x^2+3x}-10=0\)

Đặt \(\sqrt{x^2+3x}=t\ge0\)

\(\Rightarrow t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+3x}=2\)

\(\Leftrightarrow x^2+3x=4\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

27 tháng 5 2020

x\(\varepsilon\)(-\(\frac{1}{2}\);\(\frac{1}{2}\))

17 tháng 6 2016

viết đề khó hiểu quá

17 tháng 6 2016

Xin lỗi ạ.  Tại không giỏi đánh máy.  Vậy bỏ câu này đi ạ.  Chị giải câu kia giúp e nhé

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Bình phương hai vế của phương trình\(\sqrt {{x^2} - 3x + 2}  = \sqrt { - {x^2} - 2x + 2} \)ta được:

\({x^2} - 3x + 2 =  - {x^2} - 2x + 2\)(1)

Giải phương trình trên ta có:

\((1) \Leftrightarrow 2{x^2} - x = 0\)

\( \Leftrightarrow x(2x - 1) = 0\)

\( \Leftrightarrow x = 0\) hoặc \(x = \frac{1}{2}\)

b) Thử lại ta có:

Với x=0, thay vào phương trình đã cho ta được: \(\sqrt {{0^2} - 3.0 + 2}  = \sqrt { - {0^2} - 2.0 + 2}  \Leftrightarrow \sqrt 2  = \sqrt 2 \) (luôn đúng)

Với \(x = \frac{1}{2}\), thay vào phương trình đã cho ta được:

\(\sqrt {{{\left( {\frac{1}{2}} \right)}^2} - 3.\frac{1}{2} + 2}  = \sqrt { - {{\left( {\frac{1}{2}} \right)}^2} - 2.\frac{1}{2} + 2}  \Leftrightarrow \sqrt {\frac{3}{4}}  = \sqrt {\frac{3}{4}} \) (luôn đúng)

Vậy các giá trị x tìm được ở câu a thỏa mãn phương trình đã cho.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Bình phương hai vế của phương trình ta được:

\(2{x^2} - 6x + 3 = {x^2} - 3x + 1\)

Sau khi thu gọn ta được: \({x^2} - 3x + 2 = 0\). Từ đó tìm được \(x = 1\) hoặc \(x = 2\)

Thay lần lượt hai giá trị này của x vào phương trình ban đầu, ta thấy chỉ có \(x = 2\) thỏa mãn.

Vậy nghiệm của PT đã cho là \(x = 2\)

b) Bình phương hai vế của phương trình ta được:

\({x^2} + 18x - 9 = 4{x^2} - 12x + 9\)

Sau khi thu gọn ta được: \(3{x^2} - 30x + 18 = 0\). Từ đó tìm được \(x = 5 + \sqrt {19} \) hoặc \(x = 5 - \sqrt {19} \)

Thay lần lượt hai giá trị này của x vào phương trình ban đầu, ta thấy chỉ có \(x = 5 + \sqrt {19} \) thỏa mãn.

Vậy nghiệm của PT đã cho là \(x = 5 + \sqrt {19} \)