Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Phương trình có dạng ax+b=0 khi a<>0 được gọi là phương trình bậc nhất một ẩn
Phương trình 2x-5=2x+3 là phương trình bậc nhất một ẩn
c: Hai phương trình tương đương là hai phương trình có cùng tập nghiệm
a) PT bậc nhất một ẩn là: x-2=0; 4-0,2x=0
b) Giải:
x-2=0 (*)
⟺ x=-2
Vậy tập nghiệm của pt (*) là S={-2}
4-0,2x=0 (**)
⟺-0,2x=-4
⟺x=-4/-0,2=20
Vậy tập nghiệm của pt (**) là S={20}
1) 3(x + 2) = 5x + 8
<=> 3x + 6 = 5x + 8
<=> 3x + 6 - 5x - 8 = 0
<=> -2x - 2 = 0
<=> -2x = 0 + 2
<=> -2x = 2
<=> x = -1
2) 2(x - 1) = 3(3 + x) + 3
<=> 2x - 2 = 9 + x + 3
<=> 2x - 2 = 12 + x
<=> 2x - 2 - 12 - x = 0
<=> x - 14 = 0
<=> x = 0 + 14
<=> x = 14
3) 5 - (x - 6) = 4(3 - 2x)
<=> 5 - x + 6 = 12 - 8x
<=> 11 - x = 12 - 8x
<=> 11 - x - 12 + 8x = 0
<=> -1 + 7x = 0
<=> 7x = 0 + 1
<=> 7x = 1
<=> x = 1/7
a) Phương trình \(7x + \dfrac{4}{7} = 0\) là phương trình bậc nhất một ẩn vì có dạng \(ax + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(x\) là ẩn số.
Khi đó, \(a = 7;b = \dfrac{4}{7}\).
b) \(\dfrac{3}{2}y - 5 = 4\)
\(\dfrac{3}{2}y - 5 - 4 = 0\)
\(\dfrac{3}{2}y - 9 = 0\)
Phương trình \(\dfrac{3}{2}y - 9 = 0\) là phương trình bậc nhất một ẩn vì có dạng \(ay + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(y\) là ẩn số.
Khi đó, \(a = \dfrac{3}{2};b = - 9\)
c) Phương trình \(0t + 6 = 0\) không là phương trình bậc nhất một ẩn.
Mặc dù phương trình đã cho có dạng \(at + b = 0\) với \(a\) và \(b\) là các hệ số đã cho nhưng \(a = 0\).
d) Phương trình \({x^2} + 3 = 0\) không là phương trình bậc nhất một ẩn vì không có dạng \(ax + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(x\) là ẩn số (do có \({x^2}\)).
Các pt a,c,d và pt bậc nhất 1 ẩn
a: a=1; b=2
c: a=-2; b=1
d: a=3; b=0