K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

\(z^3+8=0\)

\(-8=8\left(\cos\pi+i\sin\pi\right)\)

Các nghiệm là :

\(z_k=2\left(\cos\frac{\pi+2k\pi}{3}+i\sin\frac{\pi+2k\pi}{3}\right);k=0,1,2\)

b) \(z^6-z^3\left(1+i\right)+i=0\)

Phương trình tương đương với :

\(\left(z^3-1\right)\left(z^3-i\right)=0\)

Giải phương trình nhị thức \(z^3-1=0,z^3-i=0\) có các nghiệm "

\(\varepsilon=\cos\frac{2k\pi}{3}+\sin\frac{2k\pi}{3},k=0,1,2\)

và :

\(z_k=\cos\frac{\frac{\pi}{2}+2k\pi}{3}+i\sin\frac{\frac{\pi}{2}+2k\pi}{3},k=0,1,2\)

 

25 tháng 3 2016

\(\Delta=\left(4-4i\right)^2-\left(63-16i\right)=-63-16i\)

\(r=\left|\Delta'\right|=\sqrt{63^2-16^2}=65\)

Phương trình \(y^2=-63-16i\)

Có nghiệm \(y_{1,2}=\pm\sqrt{\frac{65-63}{2}}+i\sqrt{\frac{65+63}{2}}=\pm\left(1-8i\right)\)

Kéo theo

\(z_{1,2}=4-4i\pm\left(1-8i\right)\)

Do đó \(z_1=5-12i,z_2=3+4i\)

Ta cso thể dùng cách khác để giải phương trình bậc hai trên :

\(\Delta'=\left(4-4i\right)^2-\left(63-16i\right)=-63-16i\)

Tìm căn bậc hai của -63-16i, tức là tìm \(z=x+yi,z^2=-63-16i\)

\(\Rightarrow x^2-y^2+2xyi=-63-16i\)

\(\Rightarrow\begin{cases}x^2-y^2=-63\\xy=-8\end{cases}\)

\(\Rightarrow\begin{cases}x=\pm1\\y=\pm8\end{cases}\)

\(\Delta'\)

có 2 căn bậc 2 là \(1-8i,-1+8i\)

Phương trình có hai nghiệm 

\(z_1=4\left(1-i\right)+\left(1-8i\right)=5-12i\)

\(z_2=4\left(1-i\right)-\left(1-8i\right)=3+4i\)

1 tháng 4 2017

a) (3 + 2i)z – (4 + 7i) = 2 – 5i

⇔(3+2i)z=6+2i

<=> z = \(\dfrac{\text{6 + 2 i}}{\text{3 + 2 i}}\) = \(\dfrac{22}{13}\) - \(\dfrac{6}{13}\)i

b) (7 – 3i)z + (2 + 3i) = (5 – 4i)z

⇔(7−3i−5+4i)=−2−3i

⇔z= \(\dfrac{\text{− 2 − 3 i}}{\text{2 + i}}\) = \(\dfrac{-7}{5}\) - \(\dfrac{4}{5}i\)

c) z2 – 2z + 13 = 0

⇔ (z – 1)2 = -12 ⇔ z = 1 ± 2 √3 i

d) z4 – z2 – 6 = 0

⇔ (z2 – 3)(z2 + 2) = 0

⇔ z ∈ { √3, - √3, √2i, - √2i}







28 tháng 6 2019

Chọn  D.

Đặt t = z + 3 - i. Phương trình đã cho trở thành: t2 - 6t + 13 = 0

Suy ra :  t = 3 + 2i hoặc t = 3 - 2i

Với t = 3+ 2i thì z + 3 – I = 3 + 2i hay z = 3i

Với t = 3- 2i thì z + 3 – I = 3 -2i hay z = - i

1 tháng 4 2017

a) Ta có (3 - 2i)z + (4 + 5i) = 7 + 3i <=> (3 - 2i)z = 7 + 3i - 4 - 5i

<=> z = <=> z = 1. Vậy z = 1.

b) Ta có (1 + 3i)z - (2 + 5i) = (2 + i)z <=> (1 + 3i)z -(2 + i)z = (2 + 5i)

<=> (1 + 3i - 2 - i)z = 2 + 5i <=> (-1 + 2i)z = 2 + 5i

z =

Vậy z =

c) Ta có + (2 - 3i) = 5 - 2i <=> = 5 - 2i - 2 + 3i

<=> z = (3 + i)(4 - 3i) <=> z = 12 + 3 + (-9 + 4)i <=> z = 15 -5i



NV
21 tháng 4 2020

Bán kính mặt cầu: \(R=\sqrt{1^2+\left(-2\right)^2+1^2+8}=\sqrt{14}\)

Tâm mặt cầu: \(I\left(1;-2;1\right)\)

\(\Rightarrow d\left(I;\left(Q\right)\right)=\sqrt{R^2-\left(\frac{R}{2}\right)^2}=\frac{\sqrt{42}}{2}\)

Do (Q) song song (P) nên pt (Q) có dạng: \(2x+3y+z+d=0\)

Áp dụng công thức khoảng cách:

\(d\left(I;\left(Q\right)\right)=\frac{\left|2-6+1+d\right|}{\sqrt{2^2+3^2+1}}=\frac{\sqrt{42}}{2}\)

\(\Leftrightarrow\left|d-3\right|=7\sqrt{3}\Rightarrow\left[{}\begin{matrix}d=3+7\sqrt{3}\\d=3-7\sqrt{3}\end{matrix}\right.\)

Có 2 mặt phẳng thỏa mãn: \(\left[{}\begin{matrix}2x+3y+z+3+7\sqrt{3}=0\\2x+3y+z+3-7\sqrt{3}=0\end{matrix}\right.\)

27 tháng 7 2019

 

Đáp án C

Em có:

10 tháng 1 2017

1) Chọn B

\(\left(z+i\right)^2+3\left(z^2+3zi+2i^2\right)+2\left(z^2+4zi+4i^2\right)=0\\ \Leftrightarrow\left(z+i\right)^2+3\left(z+i\right)\left(z+2i\right)+2\left(z+2i\right)^2=0\\ \Leftrightarrow\left(2z+3i\right)\left(3z+5i\right)=0\)

\(\Rightarrow\left\{\begin{matrix}z_1=-3i:2\\z_2=-5i:3\end{matrix}\right.\)

Vậy \(2z_1+3z_2=2\left(\frac{-3i}{2}\right)+3\left(\frac{-5i}{3}\right)=-8i\)

10 tháng 1 2017

2) Chọn D

\(\Delta=\left(4-i\right)^2-4\left(5+i\right)=-5-12i\)

Ta có: \(\Delta=\left(2-3i\right)^2\Rightarrow\sqrt{\Delta}=\pm\left(2-3i\right)\)

Nghiệm của pt là:

\(z=\frac{4-i\pm\sqrt{\Delta}}{2}=\frac{4-i\pm\left(2-3i\right)}{2} \)

\(\Rightarrow\left[\begin{matrix}z=3-2i\\z=1+i\end{matrix}\right.\)

\(\left|z_1\right|< \left|z_2\right|\Rightarrow\left\{\begin{matrix}z_1=1+i\\z_2=3-2i\end{matrix}\right.\)

Vậy \(\left|z_1-2z_2\right|=\left|i+1-6+4i\right|=5\sqrt{2}\)