K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

gợi ý: a)chia 2 vế cho căn 5

đặt \(\frac{1}{\sqrt{5}}=cosa\Rightarrow\frac{2}{\sqrt{5}}=sina\)

khi đó pt <=>sin(x-a)=\(\frac{3}{\sqrt{5}}>1\)

->vô nghiệm

12 tháng 9 2016

bn giải thích cho mk chỗ này được ko : \(\frac{1}{\sqrt{5}}=\cos a\Rightarrow\frac{2}{\sqrt{5}}=\sin a\)

3 tháng 4 2017

a) cosx - √3sinx = √2 ⇔ cosx - tansinx = √2

⇔ coscosx - sinsinx = √2cos ⇔ cos(x + ) =

3 tháng 4 2017

b) 3sin3x - 4cos3x = 5 ⇔ sin3x - cos3x = 1.

Đặt α = arccos thì phương trình trở thành

cosαsin3x - sinαcos3x = 1 ⇔ sin(3x - α) = 1 ⇔ 3x - α = + k2π

⇔ x = , k ∈ Z (trong đó α = arccos).



9 tháng 4 2017

a) Dễ thấy cosx = 0 không thỏa mãn phương trình đã cho nên chiaw phương trình cho cos2x ta được phương trình tương đương 2tan2x + tanx - 3 = 0.

Đặt t = tanx thì phương trình này trở thành

2t2 + t - 3 = 0 ⇔ t ∈ {1 ; }.

Vậy

b) Thay 2 = 2(sin2x + cos2x), phương trình đã cho trở thành

3sin2x - 4sinxcosx + 5cos2x = 2sin2x + 2cos2x

⇔ sin2x - 4sinxcosx + 3cos2x = 0

⇔ tan2x - 4tanx + 3 = 0

⇔ x = + kπ ; x = arctan3 + kπ, k ∈ Z.

c) Thay sin2x = 2sinxcosx ; = (sin2x + cos2x) vào phương trình đã cho và rút gọn ta được phương trình tương đương

sin2x + 2sinxcosx - cos2x = 0 ⇔ tan2x + 4tanx - 5 = 0 ⇔

⇔ x = + kπ ; x = arctan(-5) + kπ, k ∈ Z.

d) 2cos2x - 3√3sin2x - 4sin2x = -4

⇔ 2cos2x - 3√3sin2x + 4 - 4sin2x = 0

⇔ 6cos2x - 6√3sinxcosx = 0 ⇔ cosx(cosx - √3sinx) = 0


NV
19 tháng 6 2019

\(sin\left(x-\frac{\pi}{3}\right)=1\Rightarrow x-\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\Rightarrow x=\frac{5\pi}{6}+k2\pi\)

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

Đáp án A

NV
19 tháng 6 2019

\(sin\left(\frac{2x}{3}-60^0\right)=0\Rightarrow\frac{2x}{3}-60^0=k.180^0\)

\(\Rightarrow\frac{2x}{3}=60^0+k180^0\Rightarrow x=90^0+k270^0\)

Tất cả các đáp án đều sai, đề bài cho đơn vị độ nhưng đáp án lại cho đơn vị biểu diễn là radian

19 tháng 6 2019

D đúng mà bạn, đổi từ độ sang rad

Câu 1 : Cho hàm số f (x) = \(-x^3+3mx^2-12x+3\) với m là tham số . Số giá trị nguyên của m \(\in\left[-1;5\right]\) để f' (x) \(\le0\) với mọi x \(\in\) R A. 3 B. 4 C. 6 D. 5 Câu 2 : Cho hàm số f(x) = \(\frac{mx+10}{2x+m}\) với m là tham số thực . Số giá trị nguyên của m để f' (x) < 0 , \(\forall x\in\left(0;2\right)\) là A. 5 B. 4 C. 6 ...
Đọc tiếp

Câu 1 : Cho hàm số f (x) = \(-x^3+3mx^2-12x+3\) với m là tham số . Số giá trị nguyên của m \(\in\left[-1;5\right]\) để f' (x) \(\le0\) với mọi x \(\in\) R

A. 3 B. 4 C. 6 D. 5

Câu 2 : Cho hàm số f(x) = \(\frac{mx+10}{2x+m}\) với m là tham số thực . Số giá trị nguyên của m để f' (x) < 0 , \(\forall x\in\left(0;2\right)\)

A. 5 B. 4 C. 6 D. 3

Câu 3 : Cho hàm số \(y=\frac{2x}{x+1}\) có đồ thị (C) . Phương trình tiếp tuyến của (C) song song với đường thẳng \(\left(\Delta\right)\) : x - 2y + 1 = 0 là

A. y = x + 9 B. y = \(\frac{1}{2}x+\frac{9}{2}\) C. y = x - 9 D. y = \(\frac{1}{2}x-\frac{9}{2}\)

Câu 4 : Biết lim \(\frac{\sqrt{2n^2+1}-3n}{n+2}=\sqrt{a}-b\) . Tính a + b

A. 5 B. -3 C. -1 D. 2

Câu 5 : Tìm lim \(\frac{2x^2-\left(a+1\right)x-a^2+a}{x^2-a^2}\left(x\rightarrow a\right)\) theo a

A. \(\frac{3a+1}{2a}\) B. \(\frac{a-1}{2a}\) C. \(\frac{3a-1}{2a}\) D. \(\frac{3a-1}{2}\)

giải chi tiết từng câu giúp mình với ạ

2
NV
1 tháng 7 2020

3.

\(x-2y+1=0\Leftrightarrow y=\frac{1}{2}x+\frac{1}{2}\)

\(y'=\frac{2}{\left(x+1\right)^2}\Rightarrow\frac{2}{\left(x+1\right)^2}=\frac{1}{2}\)

\(\Rightarrow\left(x+1\right)^2=4\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-3\Rightarrow y=3\end{matrix}\right.\)

Có 2 tiếp tuyến: \(\left[{}\begin{matrix}y=\frac{1}{2}\left(x-1\right)+1\\y=\frac{1}{2}\left(x+3\right)+3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=\frac{1}{2}x+\frac{1}{2}\left(l\right)\\y=\frac{1}{2}x+\frac{9}{2}\end{matrix}\right.\)

4.

\(\lim\limits\frac{\sqrt{2n^2+1}-3n}{n+2}=\lim\limits\frac{\sqrt{2+\frac{1}{n^2}}-3}{1+\frac{2}{n}}=\sqrt{2}-3\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)

5.

\(\lim\limits_{x\rightarrow a}\frac{2\left(x^2-a^2\right)+a\left(a+1\right)-\left(a+1\right)x}{\left(x-a\right)\left(x+a\right)}=\lim\limits_{x\rightarrow a}\frac{\left(x-a\right)\left(2x+2a\right)-\left(a+1\right)\left(x-a\right)}{\left(x-a\right)\left(x+a\right)}\)

\(=\lim\limits_{x\rightarrow a}\frac{\left(x-a\right)\left(2x+a-1\right)}{\left(x-a\right)\left(x+a\right)}=\lim\limits_{x\rightarrow a}\frac{2x+a-1}{x+a}=\frac{3a-1}{2a}\)

NV
1 tháng 7 2020

1.

\(f'\left(x\right)=-3x^2+6mx-12=3\left(-x^2+2mx-4\right)=3g\left(x\right)\)

Để \(f'\left(x\right)\le0\) \(\forall x\in R\) \(\Leftrightarrow g\left(x\right)\le0;\forall x\in R\)

\(\Leftrightarrow\Delta'=m^2-4\le0\Rightarrow-2\le m\le2\)

\(\Rightarrow m=\left\{-1;0;1;2\right\}\)

2.

\(f'\left(x\right)=\frac{m^2-20}{\left(2x+m\right)^2}\)

Để \(f'\left(x\right)< 0;\forall x\in\left(0;2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-20< 0\\\left[{}\begin{matrix}m>0\\m< -4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{20}< m< \sqrt{20}\\\left[{}\begin{matrix}m>0\\m< -4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m=\left\{1;2;3;4\right\}\)

6 tháng 12 2016

mai đăng lại bài này nhé t làm cho h đi ngủ

6 tháng 12 2016