Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x=8 hoặc x=-1
Đặt ẩn phụ
g) x=1 hoặc x=2 hoặc x=-3
Phân tích thành nhân tử rồi xét giá trị
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)}=3\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+1\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le8\end{cases}\Rightarrow}-1\le x\le8}\)
Đặt \(\sqrt{1+x}=a\Rightarrow x+1=a^2.\)
\(a+b+ab=3\)
và \(\sqrt{8-x}=b\Rightarrow8-x=b^2\)\(\left(a,b\ge0\right)\)
Cộng hai vế xuống ta có :
\(a^2+b^2=x+1+8-x=9\)
Theo phương trình ta lại có :
\(a+b+ab=3\)
Ta có hệ phương trình :
\(\hept{\begin{cases}a^2+b^2=9\\a+b+ab=3\end{cases}}\)
Giải hệ ra tính nốt nhá :)) Mình nghĩ bài này chỉ làm theo cách này ngắn nhất thôi
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
a) ĐKXĐ: x ≥ \(\dfrac{5}{2}\)
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}=}2\sqrt{2}\)
⇔ \(\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
⇔ \(\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
⇔ \(\sqrt{2x-5}+3\) + |\(\sqrt{2x-5}-1\)| = 4
⇔ |\(\sqrt{2x-5}-1\)| = 1 - \(\sqrt{2x-5}\)
⇔ \(\sqrt{2x-5}-1\le0\)
⇔ \(\sqrt{2x-5}\le1\)
⇔ 2x - 5 ≤ 1
⇔ x ≤ \(\dfrac{5}{2}\)
Vậy phương trình có nghiệm x = \(\dfrac{5}{2}\)
c) ĐKXĐ: \(-1\le x\le1\)
\(\left(\sqrt{1+x}-1\right)\left(\sqrt{1-x}+1\right)=2x\)
⇔ \(\sqrt{1-x^2}-1=2x\)
⇔ \(\sqrt{1-x^2}=2x+1\)
⇔ \(1-x^2=4x^2+4x+1\)
⇔ \(5x^2+4x=0\)
⇔ \(x\left(5x+4\right)=0\)
⇔ \(\left\{{}\begin{matrix}x=0\left(TM\right)\\x=-\dfrac{4}{5}\left(TM\right)\end{matrix}\right.\)
Vậy PT có tập nghiệm S = \(\left\{-\dfrac{4}{5};0\right\}\)
(... phần còn lại m` vẫn chưa làm được)
Mình thấy ý c bạn làm có vấn đề:
\(\left(\sqrt{1+x}-1\right)\left(\sqrt{1-x}+1\right)=2x\)
\(\Leftrightarrow\sqrt{1-x^2}+\sqrt{1+x}-\sqrt{1-x}-1=2x\)
Bạn xem lại giúp mình nhé! Cảm ơn!