K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018

\(a.3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)

\(\Leftrightarrow3\left(x^2+7x+6\right)+2\sqrt{x^2+7x+7}=2\circledast\)

Đặt : \(x^2+7x+7=t\left(t\ge0\right)\) , ta có :

\(\circledast\Leftrightarrow3\left(t-1\right)+2\sqrt{t}=2\)

\(\Leftrightarrow3t+2\sqrt{t}-5=0\)

\(\Leftrightarrow3\sqrt{t}\left(\sqrt{t}-1\right)+5\left(\sqrt{t}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{t}-1=0\\3\sqrt{t}+5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}t=1\left(TM\right)\\vô-nghiệm\end{matrix}\right.\)

Với : \(t=1\) , thì : \(x^2+7x+7=1\Leftrightarrow x^2+x+6x+6=0\)

\(\Leftrightarrow x\left(x+1\right)+6\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)

KL...........

\(b.2x^2-8x-3\sqrt{x^2-4x-5}=12\circledast\)

ĐKXĐ : \(\left[{}\begin{matrix}x\ge5\\x\le-1\end{matrix}\right.\)

\(\circledast\Leftrightarrow2x^2-8x-12-3\sqrt{x^2-4x-5}=0\)

\(\Leftrightarrow2\left(x^2-4x-3\right)-3\sqrt{x^2-4x-5}=0\)

Đặt : \(x^2-4x-5=t\left(t\ge0\right)\) , ta có :

\(2\left(t+2\right)-3\sqrt{t}=0\)

\(\Leftrightarrow2t-3\sqrt{t}+4=0\)

\(\Leftrightarrow2\left(t-2.\dfrac{3}{4}\sqrt{t}+\dfrac{9}{16}\right)+4-\dfrac{9}{8}=0\)

\(\Leftrightarrow\left(\sqrt{t}-\dfrac{3}{4}\right)^2=\dfrac{23}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{t}-\dfrac{3}{4}=\dfrac{\sqrt{23}}{4}\\\sqrt{t}-\dfrac{3}{4}=-\dfrac{\sqrt{23}}{4}\end{matrix}\right.\)

Tới đây dễ rồi , bạn tự làm nốt nhé...:)

23 tháng 8 2018

☛ Câu hỏi của Tô Thu Huyền - Toán lớp 9 | Học trực tuyến

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)

a) ĐK: \(x^2+7x+7\ge0\)

Đặt \(a=\sqrt{x^2+7x+7}\)  \(\left(a\ge0\right)\)

PT \(\Rightarrow3a^2-3+2a=2\) \(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2+7x+7=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)  (Thỏa mãn) 

Vậy ...

b) ĐK: \(x^2-6x+6\ge0\)

Đặt \(a=\sqrt{x^2-6x+6}\)  \(\left(a\ge0\right)\)

PT \(\Rightarrow a^2+3=4a\) \(\Leftrightarrow\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)  (Thỏa mãn)

+) Với \(a=3\) \(\Rightarrow x^2-6x+6=9\) \(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{matrix}\right.\)  (Thỏa mãn)

+) Với \(a=1\) \(\Rightarrow x^2-6x+6=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)  (Thỏa mãn)

  Vậy ...

 

 

  

16 tháng 6 2021

c)C1: Áp dụng bđt AM-GM \(\Rightarrow VT\ge2>\dfrac{7}{4}\)

=> Dấu = ko xảy ra hay pt vô nghiệm

C2: Đk:\(x>0\)

Đặt \(a=\sqrt{\dfrac{x^2+x+1}{x}}\left(a>0\right)\) \(\Rightarrow\dfrac{1}{a}=\sqrt{\dfrac{x}{x^2+x+1}}\)

Pttt: \(a+\dfrac{1}{a}=\dfrac{7}{4}\Leftrightarrow4a^2-7a+4=0\) 

\(\Delta =-15<0 \) => Pt vô nghiệm

Vậy...

d) Đk: \(x\le-8;x\ge0\)

Đặt \(t=\sqrt{x\left(8+x\right)}\left(t\ge0\right)\)

Pttt: \(t^2-3=2t\Leftrightarrow t^2-2t-3=0\Leftrightarrow\left[{}\begin{matrix}t=3\left(tm\right)\\t=-1\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x\left(8+x\right)}=3\Leftrightarrow x^2+8x-9=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\) (tm)

Vậy...

a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)

\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)

\(\Leftrightarrow25x-4x=-8-75\)

\(\Leftrightarrow21x=-83\)

hay \(x=-\dfrac{83}{21}\)

b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)

\(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)

\(\Leftrightarrow\left|2x+1\right|=3x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)

d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)

\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)

\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)

\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)

\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)

\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)

\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)

\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)

\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)

vậy: Phương trình vô nghiệm

27 tháng 7 2019

-1; -6

b) ĐK: \(x^2+7x+7\ge0\) (đk xấu quá em ko giải đc;v)

PT \(\Leftrightarrow3x^2+21x+18+2\left(\sqrt{x^2+7x+7}-1\right)=0\)

\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+2\left(\frac{x^2+7x+6}{\sqrt{x^2+7x+7}+1}\right)=0\)

\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+\frac{2\left(x+1\right)\left(x+6\right)}{\sqrt{x^2+7x+7}+1}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left[3+\frac{1}{\sqrt{x^2+7x+7}+1}\right]=0\)

Hiển nhiên cái ngoặc vuông > 0 nên vô nghiệm suy ra x = -1 (TM) hoặc x = -6 (TM)

Vậy....

P/s: Cũng may nghiệm đẹp chứ chứ nghiệm xấu thì tiêu rồi:(

27 tháng 7 2019

chết, đánh nhầm dòng tương đương cuối:

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left[3+\frac{2}{\sqrt{x^2+7x+7}+1}\right]=0\)

a:

ĐKXĐ: \(x>=-2\)

\(1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)

=>\(1+\sqrt{\left(x+2\right)\left(x+5\right)}=\sqrt{x+5}+\sqrt{x+2}\)

 

Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\)(ĐK: a>0 và b>0)

Phương trình sẽ trở thành:

1+ab=a+b

=>ab-a-b+1=0

=>a(b-1)-(b-1)=0

=>(b-1)(a-1)=0

=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow a=b=1\)

=>\(\left\{{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\)

=>\(x\in\varnothing\)

b: \(\sqrt{4x^2-2x+\dfrac{1}{4}}=4x^3-x^2+8x-2\)

=>\(\sqrt{\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)

=>\(\sqrt{\left(2x-\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)

=>\(\left|2x-\dfrac{1}{2}\right|=4x^3-x^2+8x-2\)(1)

TH1: x>=1/4

\(\left(1\right)\Leftrightarrow4x^3-x^2+8x-2=2x-\dfrac{1}{2}\)

=>\(4x^3-x^2+6x-\dfrac{3}{2}=0\)

=>\(x^2\left(4x-1\right)+1,5\left(4x-1\right)=0\)

=>\(\left(4x-1\right)\left(x^2+1,5\right)=0\)

=>4x-1=0

=>x=1/4(nhận)

TH2: x<1/4

Phương trình (1) sẽ trở thành:

\(4x^3-x^2+8x-2=-2x+\dfrac{1}{2}\)

=>\(x^2\left(4x-1\right)+2\left(4x-1\right)+0,5\left(4x-1\right)=0\)

=>\(\left(4x-1\right)\cdot\left(x^2+2,5\right)=0\)

=>4x-1=0

=>x=1/4(loại)