Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{2x^3+7}=a\)
=>6ax=3a^2+1+2x-4a
=>a=2x+1 hoặc a=1/3
=>2x^3+7=(2x+1)^2 hoặc 2x^3+7=1/3
=>\(x\in\left\{1;\dfrac{1-\sqrt{13}}{2};\sqrt[3]{-\dfrac{31}{9}}\right\}\)
\(\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\);
\(\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\)
....
Ta có 2x2 - 4x + 3 = 2(x - 1)2 + 1\(\ge1\)
3x2 - 6x + 7 = 3(x - 1)2 + 4 \(\ge4\)
=> VT \(\ge3\)
Ta lại có 2 - x2 + 2x = 3 - (x - 1)2 \(\le3\)
=> VP \(\le0\)
Dấu = xảy ra khi x = 1
b) ĐK: \(1-\sqrt{3}< x< 1+\sqrt{3}\).Đặt:
\(\sqrt{2x^2-4x+3}-1+\sqrt{3x^2-6x+7}-2+x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\frac{2}{\sqrt{2x^2-4x+3}+1}+\frac{3}{\sqrt{3x^2-6x+7}+2}+1\right]=0\)
Cái ngoặc to vô nghiệm.Do đó x = 1(TM)
Vậy...
P.s: Nãy giờ em đi đánh giá lung tùng nào là "truy ngược dấu liên hợp" mất cả tiếng đồng hồ không ra và cảm thấy uổng phí quá:( Bài này nếu sai thì em chịu luôn
a/ \(\sqrt{x^2-6x+9}=\sqrt{6-2\sqrt{5}}\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(\Leftrightarrow|x-3|=\sqrt{5}-1\)
Làm nốt
b/ \(\sqrt{9x^2-6x+1}-3\sqrt{\frac{7-4\sqrt{3}}{9}}=0\)
\(\Leftrightarrow\sqrt{\left(3x-1\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(\Leftrightarrow|3x-1|=2-\sqrt{3}\)
Làm nốt
c/ \(\sqrt{2x^2-4x+2}-\sqrt{3-\sqrt{5}}=0\)
\(\Leftrightarrow\sqrt{4x^2-8x+4}-\sqrt{6-2\sqrt{5}}=0\)
\(\Leftrightarrow\sqrt{\left(2x-2\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)
\(\Leftrightarrow|2x-2|=\sqrt{5}-1\)
Làm nốt
a) giải pt ra ta được : x=-1
b) giải pt ra ta được : x=2
c)giải pt ra ta được : x vô ngiệm
d)giải pt ra ta được : x=vô ngiệm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
#)Giải :
Ta có :
\(\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\forall x\)
\(\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=4\forall x\)
\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\forall x\)
Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\forall x\)
\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\Leftrightarrow\hept{\begin{cases}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4=2}\\3-\left(x-1\right)^2=3\end{cases}}\)
\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất là x = 1
a) \(x^3+1=2\sqrt[3]{2x-1}\) (1)
Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3=2x-1\)
\(\Rightarrow1=2x-a^3\)
Phương trình (1) khi đó trở thành :
\(x^3+2x-a^3=2a\)
\(\Leftrightarrow\left(x^3-a^3\right)+2\left(x-a\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+2\right)=0\)
\(\Leftrightarrow x=a\)
Do đó : \(x=\sqrt[3]{2x-1}\Leftrightarrow x^3-2x+1=0\)
\(\Leftrightarrow\left(x-1\right).\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
1) \(\sqrt{\text{x^2− 20x + 100 }}=10\)
<=> \(\sqrt{\left(x-10\right)^2}=10\)
<=> \(\left|x-10\right|=10\)
=> \(\left[{}\begin{matrix}x-10=10\\x-10=-10\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=10+10\\x=\left(-10\right)+10\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=20\\x=0\end{matrix}\right.\)
Vậy S = \(\left\{20;0\right\}\)
2) \(\sqrt{x +2\sqrt{x}+1}=6\)
<=> \(\sqrt{\left(\sqrt{x^2}+2.\sqrt{x}.1+1^2\right)}=6\)
<=> \(\sqrt{\left(\sqrt{x}+1\right)^2}=6\)
<=> \(\left|\sqrt{x}+1\right|=6\)
=> \(\left[{}\begin{matrix}\sqrt{x}+1=6\\\sqrt{x}+1=-6\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{x}=6-1=5\\\sqrt{x}=\left(-6\right)-1=-7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=25\\x=-49\left(loai\right)\end{matrix}\right.\)
Vậy S = \(\left\{25\right\}\)
3) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
<=> \(\sqrt{\left(x-3\right)^2}=\sqrt{\sqrt{3^2}+2.\sqrt{3}.1+1^2}\)
<=> \(\left|x-3\right|=\sqrt{\left(\sqrt{3}+1\right)^2}\)
<=> \(\left|x-3\right|=\sqrt{3}+1\)
=> \(\left[{}\begin{matrix}x-3=\sqrt{3}+1\\x-3=-\left(\sqrt{3}+1\right)\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\sqrt{3}+4\\x=-\sqrt{3}+2\end{matrix}\right.\)
Vậy S = \(\left\{\sqrt{3}+4;-\sqrt{3}+2\right\}\)
4) \(\sqrt{3x+2\sqrt{3x}+1}=5\)
<=> \(\sqrt{\sqrt{3x}^2+2.\sqrt{3x}.1+1^2}=5\)
<=> \(\sqrt{\left(\sqrt{3x}+1\right)^2}=5\)
<=> \(\left|\sqrt{3x}+1\right|=5\)
=> \(\left[{}\begin{matrix}\sqrt{3x}+1=5\\\sqrt{3x}+1=-5\end{matrix}\right.\)=> \(\left[{}\begin{matrix}\sqrt{3x}=5-1=4\\\sqrt{3x}=\left(-5\right)-1=-6\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3x=16\\3x=-6\left(loai\right)\end{matrix}\right.\)=> x = \(\dfrac{16}{3}\) Vậy S = \(\left\{\dfrac{16}{3}\right\}\)
5) \(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}\)
<=> \(\sqrt{\left(x-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}-1\right)^2}\)
<=> \(\left|x-\sqrt{3}\right|=\sqrt{3}-1\)
<=> \(\left[{}\begin{matrix}x-\sqrt{3}=\sqrt{3}-1\\x-\sqrt{3}=-\left(\sqrt{3}-1\right)\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=-1\\x=-2\sqrt{3}+1\end{matrix}\right.\)
Vậy S = \(\left\{-1;-2\sqrt{3}+1\right\}\)
6) \(\sqrt{6x+4\sqrt{6x}+4}=7\)
<=> \(\sqrt{\sqrt{6x}^2+2.\sqrt{6x}.2+2^2}=7\)
<=> \(\sqrt{\left(\sqrt{6}+2\right)^2}=7\)
<=> \(\left|\sqrt{6x}+2\right|=7\)
=> \(\left[{}\begin{matrix}\sqrt{6x}+2=7\\\sqrt{6x}+2=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{6x}=7-2=5\\\sqrt{6x}=\left(-7\right)-2=-9\left(loai\right)\end{matrix}\right.\)
=> \(\sqrt{6x}=5=>6x=25=>x=\dfrac{25}{6}\)
\(ĐKXĐ:x\ge\sqrt[3]{\frac{-7}{2}}\)
\(\left(6x\sqrt{2x^3+7}-18\right)=6x^3+2x-8-\left(4\sqrt{2x^3+7}-12\right)\)
\(\frac{36x^2\left(2x^3+7\right)-324}{6x\sqrt{2x^3+7}+18}=2\left(3x^3+x-4\right)-\frac{16\left(2x^3+7\right)-144}{4\sqrt{2x^3+7}+12}\)
\(\frac{72x^5+252x^2-324}{6x\sqrt{2x^3+7}+18}=2\left(x-1\right)\left(3x^2+3x+4\right)-\frac{32x^3-32}{4\sqrt{2x^3+7}+12}\)
\(\frac{36\left(2x^5+7x^2-9\right)}{6x\sqrt{2x^3+7}+18}=2\left(x-1\right)\left(3x^2+3x+4\right)-\frac{32\left(x-1\right)\left(x^2+x+1\right)}{4\sqrt{2x^3+7}+12}\)
\(\frac{36\left(x-1\right)\left(2x^4+2x^3+2x^2+9x+9\right)}{6x\sqrt{2x^3+7}+18}=2\left(x-1\right)\left(3x^2+3x+4\right)-\frac{32\left(x-1\right)\left(x^2+x+1\right)}{4\sqrt{2x^3+7}+12}\)
\(\left(x-1\right)\left[\frac{36\left(2x^4+2x^3+2x^2+9x+9\right)}{6x\sqrt{2x^3+7}+18}+\frac{32\left(x^2+x+1\right)}{4\sqrt{2x^3+7}+12}-2\left(3x^2+3x+4\right)\right]=0\)
\(\orbr{\begin{cases}x=1\left(TM\right)\\\frac{36\left(2x^4+2x^3+2x^2+9x+9\right)}{6x\sqrt{2x^3+7}+18}+\frac{32\left(x^2+x+1\right)}{4\sqrt{2x^3+7}+12}-2\left(3x^2+3x+4\right)=0\end{cases}}\)
chưa biết cm câu cuối thế nào :v
Cảm ơn cậu nhaa