K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

Ta có : 17 - 14(x + 1) = 13 - 4(x + 1) - 5(x - 3)

<=> 17 - 14x - 14 = 13 - 4x - 4 - 5x + 15

<=> -14x + 3 = -9x + 24

<=> -14x + 9x = 24 - 3

<=> -5x = 21

=> x = -4,2

1 tháng 7 2017

Ta có :  5x + 3,5 + (3x - 4) = 7x - 3(x - 0,5)

<=>  5x + 3,5 + 3x - 4 = 7x - 3x + 1,5 

<=> 8x - 0,5 = 4x + 1,5

=> 8x - 4x = 1,5 + 0,5

=> 4x = 2

=> x = \(\frac{1}{2}\)

6 tháng 5 2018

a) \(21x+7=15x+35\)

\(\Leftrightarrow21x-15x=35-7\)

\(\Leftrightarrow6x=28\)

\(\Leftrightarrow x=\frac{28}{6}\)

b)\(|5x+3|-2x=x-17\)

\(\Leftrightarrow|5x+3|=3x-17\)

\(\Leftrightarrow\orbr{\begin{cases}5x+3=3x-17\\5x+3=17-3x\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-20\\8x=14\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=-10\\x=\frac{4}{7}\end{cases}}\)

c) \(\left(5x+2\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\3x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=-2\\3x=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{2}{5}\\x=\frac{4}{3}\end{cases}}}\)

6 tháng 5 2018

a)  \(21x+7=15x+35\)

\(\Leftrightarrow\)\(6x=28\)

\(\Leftrightarrow\)\(x=\frac{14}{3}\)

Vậy...

b)  \(\left|5x+3\right|-2x=x-17\)

\(\Leftrightarrow\)\(\left|5x+3\right|=3x-17\)

Nếu  \(x\ge-\frac{3}{5}\)thì pt trở thành:

             \(5x+3=3x-17\)

      \(\Leftrightarrow\)\(2x=-20\)

      \(\Leftrightarrow\)\(x=-10\)(loại)

Nếu  \(x< -\frac{3}{5}\)thì pt trở thành:

       \(-5x-3=3x-17\)

      \(\Leftrightarrow\)\(8x=14\)

      \(\Leftrightarrow\) \(x=\frac{7}{4}\) (loại)

Vậy pt vô nghiệm

c)  \(\left(5x+2\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}5x+2=0\\3x-4=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{2}{5}\\x=\frac{4}{3}\end{cases}}\)

Vậy...

27 tháng 3 2020

\(\text{a) 5(2x-3)-4(5x-7)=19-2(x+11)}\)

\(10x-15-20x+28=19-2x-22\)

\(10x-20x+2x=19-22-28+15\)

\(-8x=-16\)

\(\Rightarrow x=2\)

\(\text{b) 4(x+3)-7x+17=8(5x-1)+166}\)

\(4x+12-7x+17=40x-8+166\)

\(4x-7x-40x=-8+166-17-12\)

\(-43x=129\)

\(x=-3\)

\(\text{c) 17-14(x+1)=13-4(x+1)-5(x-3)}\)

\(17-14x+14=13-4x-4-5x+15\)

\(-14x+4x+5x=13-4+15-14-17\)

\(-5x=-7\)

\(x=\frac{7}{5}\)

\(\text{d) 5x+3,5+(3x-4)=7x-3(x-0,5)}\)

\(5x+3,5+3x-4=7x-3x+1,5\)

\(5x+3x-7x+3x=1,5-3,5\)

\(x=-2\)

\(\text{e) 7(4x+3)-4(x-1)=15(x+0,75)+7}\)

\(28x+21-4x+4=15x+11,25+7\)

\(28x-4x-15x=11,25+7-4-21\)

\(9x=\frac{-27}{4}\)

\(x=\frac{-3}{4}\)

\(\text{f) 3x+2,42+o,8x=3,38-0,2x}\)

\(3x+0,8x+0,2x=3,38-2,42\)

\(4x=\frac{24}{25}\)

\(x=\frac{6}{25}\)

chúc bạn học tốt !!

3 tháng 12 2018

đề có sai k đấy 

12 tháng 10 2019

pt <=> \(\left(x-5\right)^4+\left(x-2\right)^4=17\)

Đặt: \(t=x-\frac{5+2}{2}=x-\frac{7}{2}\)

pt trở thành: \(\left(t+\frac{7}{2}-5\right)^4+\left(x+\frac{7}{2}-2\right)^4=17\)

<=> \(\left(t-\frac{3}{2}\right)^4+\left(t+\frac{3}{2}\right)^4=17\)  ( Nếu em nhớ hằng đẳng thức (a+b)^4 thì có thể làm tắt rồi rút gọn )

<=> \(\left[\left(t-\frac{3}{2}\right)^2+\left(t+\frac{3}{2}\right)^2\right]^2-2\left(t-\frac{3}{2}\right)^2\left(t+\frac{3}{2}\right)^2=17\)

<=> \(\left(2t^2+\frac{9}{2}\right)^2-2\left(t^2-\frac{9}{4}\right)^2=17\)

<=> \(2t^4+27t^2-\frac{55}{8}=0\)

<=> \(\left(t^4+2.t^2.\frac{27}{4}+\frac{27^2}{4^2}\right)-\frac{27^2}{4^2}-\frac{55}{16}=0\)

<=> \(\left(t^2+\frac{27}{4}\right)^2=49\)

<=> \(\orbr{\begin{cases}t^2=\frac{1}{4}\\t^2=-\frac{55}{4}\left(loai\right)\end{cases}}\Leftrightarrow t=\pm\frac{1}{2}\)

Với  t = 1/2 em thay vào tính x

       t =-1/2 ....

16 tháng 3 2020

\(x^4+4x^3+5x^2-4x+4=0\)

\(\Leftrightarrow x^4+4x^3+4x^2+x^2-4x+4=0\)

\(\Leftrightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)

Vì \(x^2\left(x+2\right)^2\ge0\forall x;\left(x-2^2\right)\ge0\forall x\)

\(\Rightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2\ge0\)

Mà \(x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x\left(x+2\right)=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0;x=-2\\x=2\end{cases}}\)

Mà ko cùng một lúc tồn tại 2 giá trị của x

\(\Rightarrow\)Phương trình vô nghiệm

Vậy ...